Influence of a Multipurpose Retention Reservoir on Extreme River Flows, a Case Study of the Nielisz Reservoir on the Wieprz River (Eastern Poland)

Abstract

The objective of this paper is the assessment of the effect of a multifunctional mid-size retention reservoir on the occurrence of floods and low flows. The study object was moderate size reservoir located in Nielisz in eastern Poland on Wieprz river. The analysis conducted for the hydrological period 1976–2014 showed a positive effect of the reservoir on compensating low flows. In gauging sections located below the reservoir, streamflow droughts almost completely disappeared. The anti-flood function is particularly evident in the case of small floods, and involves a delay in the occurrence of cumulative flow, without reduction in flood volumes. Mean flow fluctuations decreased, while environmental flows were continuously ensured.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Ashraf, M., Kahlown, M.A., and Ashfaq, A., Impact of small dams on agriculture and groundwater development: A case study from Pakistan, Agric. Water Manag., vol. 92, pp. 90–98.

    Article  Google Scholar 

  2. 2

    Batalla, R.J., Gomez, C.M., and Kondolf, G.M., Reservoir-induced hydrological changes in the Ebro River basin (NE Spain), J. Hydro., 2004, vol. 290, pp. 117–136.

    Article  Google Scholar 

  3. 3

    Cha, D., Lee, S., and Park, H., Investigating the vulnerability of dry-season water supplies to climate change: Case study of the Gwangdong Reservoir Drought Management System, Korea, Water Resour. Manag., 2012, vol. 26, no. 14, pp. 4183–4201.

    Article  Google Scholar 

  4. 4

    Connaughton, J., King, N., Dong, L., Ji, P., and Lund, J., Comparing simple flood reservoir operation rules, Water, 2014, vol. 6, pp. 2717–2731.

    Article  Google Scholar 

  5. 5

    Corduneanu, F., Bucur, D., Cimpeanu, S.M., Apostol, I.C., and Strugariu, Al., Hazards resulting from hydrological extremes in the upstream catchment of the Prut River, Water Resour., 2016, vol. 43, no. 1, pp. 42–47.

    Article  Google Scholar 

  6. 6

    Di Baldassarre, G., Wanders N., AghaKouchak, A., Kuil L., Rangecroft, S., Veldkamp, T.I.E., and Van Loon, A., Water shortages worsened by reservoir effects, Nature Sustain., 2018, vol. 1, pp. 617–622.

    Article  Google Scholar 

  7. 7

    Dmochowska, H., Ed., Concise Statistical Yearbook of Poland, Warsaw: Statistical Publ. Establishment, 2011.

    Google Scholar 

  8. 8

    Döll, P., Fiedler, K., and Zhang, J., Global-scale analysis of river flow alterations due to water withdrawals and reservoirs, Hydrol. Earth Syst. Sci., 2009, vol. 13, pp. 2413–2432.

    Article  Google Scholar 

  9. 9

    Feyen, L. and Dankers, R., Impact of global warming on streamflow drought in Europe, J. Geophys. Res., 2009, vol. 114, D17116.

    Article  Google Scholar 

  10. 10

    Fleig, A., Tallaksen, L., Hisdal, H., and Demuth, S., A global evaluation of streamflow drought characteristics, Hydrol. Earth Syst. Sci., 2006, vol. 10, pp. 535–552.

    Article  Google Scholar 

  11. 11

    Forzieri, G., Feyen, L., Rojas, R., Florke, M., Wimmer, F., and Bianchi, A., Ensemble projections of future streamflow droughts in Europe, Hydrol. Earth Syst. Sci., 2014, vol. 18, pp. 85–108.

    Article  Google Scholar 

  12. 12

    Gruca-Rokosz, R., Czerwieniec, E., and Tomaszek, J.A., Methane emission from the Nielisz Reservoir, Environ. Prot. Eng., 2011, vol. 37, no. 3, pp. 101–109.

    Google Scholar 

  13. 13

    Kanownik, W., Kowalik, T., Bogdal, A., and Ostrowski, K., Quality categories of stream water included in a small retention program, Pol. J. Environ. Stud., 2013, vol. 22, no. 1, pp. 159–165.

    Google Scholar 

  14. 14

    Kelly, V.J., Influence of reservoirs on solute transport: a regional-scale approach, Hydrol. Process., 2001, vol. 15, pp. 1227–1249.

    Article  Google Scholar 

  15. 15

    Konieczna, J. and Konieczny, D., Causes of spatial transformations in rural area in Poland, Rural Development 2017, Proc. 8th Int. Sci. Conf. Rural Development 2017, 2017. https://doi.org/10.15544/RD.2017.127

  16. 16

    Lauri, H., de Moel, H., Ward, P.J., Rasanen, T.A., Keskinen, M., and Kummu, M., Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge, Hydrol. Earth Syst. Sci., 2012, vol. 16, pp. 4603–4619.

    Article  Google Scholar 

  17. 17

    Lehner, B., Doll, P., Alcamo, J., Henrichs, T., and Kaspar, F., Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis, Clim. Change, 2006, vol. 75, pp. 273–299.

    Article  Google Scholar 

  18. 18

    Liebe, J., van de Gisen, N., and Andreini, M., Estimation of small reservoir storage capacities in a semi-arid environment: A case study in the Upper East Region of Ghana, Phys. Chem. Earth, 2005, vol. 30, pp. 448–454.

    Article  Google Scholar 

  19. 19

    Ljung, G. and Box, G., On a measure of lack of fit in time series models, Biometrika, 1978, vol. 65, pp. 297–303.

    Article  Google Scholar 

  20. 20

    Lopez-Moreno, J.I., Vicente-Serrano, S.M., Beguería, S., García-Ruiz, J.M., Portela, M.M., and Almeida, A.B., Dam effects on droughts magnitude and duration in a transboundary basin: The Lower River Tagus, Spain and Portugal, Water Resour. Res., 2009, vol. 45, W02405.

    Article  Google Scholar 

  21. 21

    Madsen, H. and Rosbjerg, D., On the modelling of extreme droughts, IAHS Publications-Series of Proceedings and Reports—Int.Assoc. Hydrol. Sci., 1995, vol. 231, pp. 377–386.

    Google Scholar 

  22. 22

    Michalczyk, Z., Water—an underestimated resource of the Lublin Region, Teka Komisji Ochrony i Kształtowania Środowiska Przyrodniczego, 2009, vol. 6, pp. 170–179.

    Google Scholar 

  23. 23

    Michalczyk, Z. and Sposob, J., Water Resources of Poland and Their state in Lublin District, Teka Komisji Ochrony i Kształtowania Środowiska Przyrodniczego, 2011, vol. 8, pp. 104–111.

    Google Scholar 

  24. 24

    Michalczyk, Z., Chmiel, S., Glowacki, S., and Zielinska, B., Changes of springs’ yield of Lublin Upland and Roztocze Region in 1998–2008, J. Water Land Dev., 2008, vol. 12, no. 1, pp. 113–125.

    Article  Google Scholar 

  25. 25

    Mikhailov, V.N., Kravtsova, V.I., and Isupova, M.V., Impact of reservoirs on the hydrological regime and morphology of the lower reaches and delta of the Zambezi River (Mozambique), Water Resour., 2015, vol. 42, no. 2, pp. 170–185.

    Article  Google Scholar 

  26. 26

    Mikhailova, M.V., Mikhailov, V.N., and Morozov, V.N., Extreme hydrological events in the Danube River basin over the last decades, Water Resour., 2012, vol. 39, no. 2, pp. 161–179.

    Article  Google Scholar 

  27. 27

    Mioduszewski, W., Reconstruction of retention capacity of small river basins as a protection measure against floods and droughts, Int. Agrophys., 1998, vol. 12, pp. 259–269.

    Google Scholar 

  28. 28

    Mioduszewski, W., Influence of small water reservoirs on groundwater level, Teka Kom. Ochr. Kszt. Środ.Przyr., 2006, vol. 3, pp. 136–140.

    Google Scholar 

  29. 29

    Mioduszewski, W., Small (natural) water retention in rural areas, J. Water Land Dev., 2014, vol. 20, nos. I-III, pp. 19–29.

  30. 30

    Mix, K., Groeger, A.W., and Lopes, V.L., Impacts of dam construction on streamflow during drought periods in the Upper Colorado River Basin, Texas, Lakes and Reser.: Res. Manag., 2017, vol. 21, pp. 329–337.

    Article  Google Scholar 

  31. 31

    Motovilov, Yu.G., Danilov-Danilyan, V.I., Dod, E.V., and Kalugin, A.S., Assessing the flood control effect of the existing and projected reservoirs in the Middle Amur Basin by physically-based hydrological models, Water Resour., 2015, vol. 42, no. 5, pp. 580–593.

    Article  Google Scholar 

  32. 32

    Rangecroft, S., Van Loon, A.F., Maureira, H., Verbist, K., and Hannah, D.M., Multi-method assessment of reservoir effects on hydrological droughts in an arid region, Earth System Dynamics Discussion, 2016. https://doi.org/10.5194/esd-2016-57

    Book  Google Scholar 

  33. 33

    Santosa, D. and Goulter, I., Application of multi-objective analysis to water storage, Int. J. Water Resour. Development, 1991, vol. 7, no. 2, pp. 82–91.

    Article  Google Scholar 

  34. 34

    Savkin, V.M. and Dvurechenskaya, S.Ya., Resources-related and water-environmental problems of the integrated use of the Novosibirsk Reservoir, Water Resour., 2014, vol. 41, no. 4, pp. 446–453.

    Article  Google Scholar 

  35. 35

    Sendil, U., Abdulaziz, S.A., and Fouad, F.A., Management plans for artificial reservoir recharge, Int. J. Water Resour. Development, 1990, vol. 6, no. 3, pp. 163–169.

    Article  Google Scholar 

  36. 36

    Suen, J.P. and Eheart, J.W., Reservoir management to balance ecosystem and human needs: Incorporating the paradigm of the ecological flow regime, Water Resour. Res., 2006, vol. 42, W03417.

    Article  Google Scholar 

  37. 37

    Tallaksen, L., Madsen, H., and Clausen, B., On the definition and modelling of streamflow drought duration and deficit volume, Hydrol. Sci. J., 1997, vol. 42, no. 1, pp. 15–33.

    Article  Google Scholar 

  38. 38

    Wiejaczka, L., Pirog, D., Soja, R., and Serwa M., Community perception of the Klimkowka Reservoir in Poland, Int. J. Water Resour. Development, 2014, vol. 30, no. 4, pp. 649–661.

    Article  Google Scholar 

  39. 39

    Vogel, R. and Stedinger, J., Generalized storage-reliability-yield relationships, J. Hydrol., 1987, vol. 89, pp. 303–327.

    Article  Google Scholar 

  40. 40

    Wu, J., Liu, Z., Yao, H., Chen, Xia., Chen, Xin. Zheng, Y., and He, Y., Impacts of reservoir operations on multi-scale correlations between hydrological drought and meteorological drought, J. Hydrol., 2018, vol. 563, pp. 726–736.

    Article  Google Scholar 

  41. 41

    Yevjevich, V., An Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts, Fort Collins, Colorado: Hydrology papers, Colorado State University, 1967.

  42. 42

    Zelenhasic, E. and Salvai, A., A method of streamflow drought analysis, Water Resour. Res., 1987, vol. 23, no. 1, pp. 156–168.

    Article  Google Scholar 

  43. 43

    Zhang, M., Zhu, L., Liu, W., Han, J., and Yang, Y., Influence of Large Reservoir Operation on Water-Levels and Flows in Reaches below Dam: Case Study of the Three Gorges Reservoir, Sci. Rep., 2017, vol. 7, 15 640.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Raczyński.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krzysztof Raczyński Influence of a Multipurpose Retention Reservoir on Extreme River Flows, a Case Study of the Nielisz Reservoir on the Wieprz River (Eastern Poland). Water Resour 47, 29–40 (2020). https://doi.org/10.1134/S0097807820010091

Download citation

Keywords:

  • low flows
  • floods
  • Nielisz
  • reservoir
  • extreme flows
  • storage reservoir