Skip to main content
Log in

Hydrological Characteristics of Estuary in Wulan Delta in Demak Regency, Indonesia

  • WATER RESOURCES AND THE REGIME OF WATER BODIES
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Understanding estuarine characteristics is crucial for managing aquatic ecosystem and aquaculture. A delta is a dynamic area that influence by both sea and river. Research on a micro-tidal estuary remains limited, particularly in Indonesia. To understand the estuarine management in the delta, this research provides an overview about the hydrological characteristics in Wulan Delta Estuary. This research is important to maintain agriculture, aquaculture, and mangrove ecosystem. Morphological data and hydrological were collected in wet season and dry season. The tidal data were collected from 2007–2016. As the results, the river is predominant in the mixing process in the wet season and the tides in the dry season. A low mixing energy causes stratification in the water column, particularly in a depth water depth. In a shallow water depth, salinity circulation is homogenous. In dry season, the sea water can penetrate into the river up to more than 5 km, due to smooth river bed that may harm the agricultural area in surrounding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Benitez, A.J.D., Gomez, A.G., and Diaz, C.A., Definition of mixing zones in rivers, Environ. Fluid Mech., 2016, vol. 16, pp. 209–244.

    Article  Google Scholar 

  2. Bok, C.D., Stam, J.M.T., Turner, A.K., and dan Maurenbrecher, P.M., Relation between tidal prism and cross section area of the inlet of the eastern Scheldt, Proceeding RCEM 2nd IAHR Symposium on River, Coastal and Estuarine Morphodynamics, 2001, pp. 483–492.

  3. Brondizio, E.S., Georgiou, F.E., Szabo, S., Vogt, N., Sebesvari, Z., Renaud, F.G., Newton, A., Anthony, E., Mansur, A.V., Matthews, Z., Hetrick, S., Costa, S.M., Tessler, Z., Tejedor, A., Longjas, A., and Dearing, J.A., Catalizing action towards the sustainability of deltas, Current Opinion in Environ. Sustainability, 2016, vol. 19, pp. 182–194.

    Article  Google Scholar 

  4. Brown, C.A. and Nelson, W.G., A method to identify estuarine water quality exceedances associated with the ocean conditions, Environ. Monit. Asses., 2015, vol. 187, no. 133, pp. 1–14.

    Article  Google Scholar 

  5. Budiyono, Y., Aerts, J., Brinkman, J., Marfai, M.A., and Ward, P., Flood risk assessment for delta mega-cities: a case study of Jakarta, Natural Hazard Earth System Sci., 2015, vol. 16, pp. 757–774.

    Article  Google Scholar 

  6. Cahwla, A., Jay, D.A., Baptista, A.M., Wilkin, M., and Seaton, C., Seasonal variability and estuary-shelf interactions in circulation dynamics of river dominated estuary, Estuaries Coasts, 2008, vol. 31, pp. 269–288.

    Article  Google Scholar 

  7. Duc, N.A., Salt intrusion, tides, and mixing in multi-channel estuaries, Dissertation, Delft: UNESCO-IHE Institute for Water Education, 2008.

  8. Emon, R.M., Islam, M.M., Halder, J., and Fan, Y., Genetic diversity and association mapping for salinity tolerance in Bangladeshi rice landraces, The Crop J., 2015, vol. 3, pp. 440–444.

    Article  Google Scholar 

  9. Engle, V.D., Kurtz, J.C., Smith, L.M., Chancy, C., and Bourgeois, P., A classification of the U.S. estuaries based on physical and hydrological attributes, Environ. Monit. Asses., 2007, vol. 129, pp. 397–412.

    Article  Google Scholar 

  10. Fleenor, W.E., Hanak, E., Laund, J.R., and Mount, J.R., Delta Hydrodynamics and Water Salinity with Future Condition, San Fransisco: Public Policy Institute of California, 2008.

  11. Garel, E., Sousa, C., Ferrerira, O., and Morales, J.A., Decadal morphological response of an ebb-tidal delta and down-drift beach to artificial breaching and inlet stabilization, Geomorphol., 2014, vol. 216, pp. 13–25.

    Article  Google Scholar 

  12. Istyarini, H.H., Fauzi, H., Badaruddin, and Mahyudin, R.P., Utilization of Global Satellte Mapping of Precipitation (GSMaP) for Schmidt-Ferguson Climate Classification in South Kalimantan, Indonesia, J. Biodiversity and Environ. Sci., 2018, vol. 3, no. 1, pp. 151–156.

    Google Scholar 

  13. Jiang, A.W., Ranasinghe, R., and Cowell, P., Contemporary hydrodynamics and morphological change of a microtidal estuary: a numerical modelling study, Ocean Dynamics, 2013, vol. 63, pp. 21–41.

    Article  Google Scholar 

  14. Ly, S., Charles, C., and Degre, A., Geostatistical interpolation of daily rainfall at catchment scale: the use of several variogram models in the Ourthe and Ambleve catchments, Belgium, Hydrol. Earth System Sci., 12011, vol. 5, pp. 2259–2274.

  15. Marfai, M.A., King, L., Sartohadi, J., Sudrajat, S., Budiani, S.R., and Yulianto, F., The impact of tidal flooding on a coastal community in Semarang, Indonesia, Environ., 2008, vol. 28, pp. 237–248.

    Google Scholar 

  16. Marfai, M.A., Impact of sea level rise to coastal ecology: a case study on the northern part of Java Island, Indonesia, Quaestiones Geographicae, 2014, vol. 33, no. 1, pp. 107–114.

    Article  Google Scholar 

  17. Marfai, M.A., Tyas, D.W., Nugraha I., Ulya, A.F., and Riasasi, W., The morphodynamics of Wulan delta and its impact on the coastal community in Wedung sub-district, Demak Regency, Indonesia, J. Environ. Prot., 2016, vol. 7, pp. 60–71.

    Article  Google Scholar 

  18. Nichols, M.M. and dan Biggs, R.B., Estuaries, in Coastal Sedimentary Environ., Dalam Jr. Davis R.A., Ed., New York: Springer-Verlag, 1985, pp. 77–173.

    Google Scholar 

  19. Oliva, M.G., Djordjevic, and Tabor, G.R., The influence of channel geometry on tidal energy extraction in estuaries, Renewable Energy, 2017, vol. 101, pp. 512–525.

    Google Scholar 

  20. Powell, M.A., Thieke, R.J., and Mehta, A.J., Morphodynamic relation for ebb and flood delta volumes at Florida’s tidal entrances, Ocean Dynamics, 2006, vol. 56, pp. 295–307.

    Article  Google Scholar 

  21. Pritchard, D.W., Estuarine Circulation Pattern, Proc. Amer. Soc. Civil Eng. (ASCE), 1955, vol. 81, p. 717.

    Google Scholar 

  22. Pritchard, D.W., The dynamic structure of a coastal plain estuary, J. Marine Sci., 1956, vol. 15, no. 1, pp. 33–42.

    Google Scholar 

  23. Putri, W.A.E., Kapasitas asimilasi bahan pencemar di muara sungai batang arau (muara padang) sumatera barat, J. Sumberdaya Perairan, 2007, vol. 1, no. 1, pp. 27–34.

    Google Scholar 

  24. Renaud, F. and Kuenser, C., The Mekong Delta System: Interdisiplinary Analyses of a River Delta, Dordrecht: Springer, 2012.

    Book  Google Scholar 

  25. Reeves, J.M., Haynes, D., Garcia, A., and Gell, P.A., Hydrological change in the Coorong estuary, Australia, past and present: evidence from fossil invertebrate and algal assemblages, Estuaries and Coasts, 2014. https://doi.org/10.1007/s12237-014-9929-4

  26. Ross, A.C., Najjar, R.G., Li, M., Mann, M.E., Ford, S.E., and Katz, B., Sea-level rise and other influences on decadal-scale salinity variability in coastal plain estuary, Coastal and Shelf Sci., 2015, vol. 157, pp. 79–92.

    Article  Google Scholar 

  27. Rynne, P., Reniers, A., Kreeke, J.V.D., and MacMahan, J., The effect of tidal exchange on residence time in coastal embayment, Estuarine, Coastal and Shelf Sci., 2016, vol. 172, pp. 108–120.

    Article  Google Scholar 

  28. Said and Sukrisno, Peta Hidrogeologi Indonesia Lembar VII: Semarang, Bandung: Direktorat Geologi Tata Lingkungan, 1988.

  29. Sany, S.B.T., Hashim, R., Rezayi, M., Salleh, A., and Safari, O., A review strategies to monitor water and sediment quality for sustainability assessment of marine environment, Environ. Sci. Pollut. Res., 2014, vol. 21, pp. 813–833.

    Article  Google Scholar 

  30. Savenji, H.H.G., Salinity and Tides in Alluvial Estuaries, Delft: Delft Univ. Technol., 2012.

    Google Scholar 

  31. Siegle, E., Schettini, C.A.F., Klein, A.H.F., and Jr. Toldo, E.E., Hydrodynamics and suspended sediment transport in the Camboriu estuary—Brazil: pre jetty conditions, Brazilian J. Oceanogr., 2009, vol. 57, no. 2, pp. 123–135.

    Article  Google Scholar 

  32. Simmons, H.B., Some effect of upland discharge on estuarine hydraulics, Proc. Amer. Soc. Civil Eng. (ASCE), 1955, vol. 81, p. 792.

    Google Scholar 

  33. Sinha, P.C., Rao, Y.R., Rao, A.D., and Dube, S.K., Modelling Circulation and Salinity in Estuaries, in Modelling and Monitoring of Coastal Marine Processes, Murthy, C.R., Sinha, P.C., and Rao, Y.R., Eds., New Delhi: Springer, 2008, pp. 86–101.

    Google Scholar 

  34. Stalker, J.C., Price, R.M., Rivera-Monroy, V.H., Herrera-Silveira, Morales, J., S., Benitez, J.A., and Alonzo-Parra, D., Hydrological dynamics of a subtropical estuary using geochemical tracers, Celestun, Yucatan, Mexico, Estuaries Coasts, 2014, vol. 37, pp. 1376–1387.

    Article  Google Scholar 

  35. Sunarto, Geomorphological development of the Muara palaeo-strait in relation to the morphodynamics of the Wulan delta, Central Java, Indonesian J. Geogr., 2008, vol. 40, no. 2, pp. 177–185.

  36. Suryanti, Kajian Tingkat Saprobitas di Muara Sungai Morodemak pada Saat Pasang Surut, J. Saintek Perikanan, 2008, vol. 4, no. 1, pp. 78–83.

  37. Sylaios, G.K., Tsihrintzis, V.A., Akratos, C., and Haralambidou, K., Quantification of water, salt, and nutrient exchange process at the mouth of the Mediterranean Coastal Lagoon, Environ. Monit. Assess., 2006, vol. 119, pp. 275–301.

    Article  Google Scholar 

  38. Tjasyono, B., Klimatologi, Bandung: Bandung Press, 2004.

    Google Scholar 

  39. Triatmodjo, B., Teknik Pantai, Yogyakarta: Beta Ofset, 1999.

  40. Uncles, R.J., Stephens, J.A., and Harris, C., Estuaries of southwest England: salinity, suspended particulate matter, loss-on ignition and morphology, Prog. Oceanogr., 2015, vol. 137, pp. 385–408.

    Article  Google Scholar 

  41. Viero, D.P. and Defina, A., Water age, exposure time, and local flushing time in semi-enclosed, tidal basins with negligible freshwater inflow, J. Marine Systems, 2016, vol. 156, pp. 16–29.

    Article  Google Scholar 

  42. Vijayakumar, V., Vasudevan, S., and Pruthiviraj, T., An assessment of morphometric characteristic of coastal lakes of Cuddalore district, Tamilnadu, south east coast of India, by using GIS, Int. J. Adv. Res., 2013, vol. 1, no. 4, pp. 233–238.

    Google Scholar 

  43. Wang, J., MacDonald, D.G., Orton, P.M. Cole, K., and Lan, J., The effect of discharge, tides, and wind of lift-off turbulence, Estuaries Coasts, 2015, vol. 38, pp. 2117–2131.

    Article  Google Scholar 

  44. William, A.B. and Benson, N.U., Interseasonal hydrological characteristics and variabilities in surface water of tropical estuarine ecosystems within Niger Delta, Nigeria, Environ. Monit. Assess., 2010, vol. 165, pp. 399–406.

    Article  Google Scholar 

  45. Yankovsky, A.E., Raymond, T., Torres, G.L.M., and Kyungho, J., Interaction of tidal and fluvial processes in the transition zone of the Santee River, SC, USA, Estuaries Coasts, 2012, vol. 35, pp. 1500–1509.

    Article  Google Scholar 

  46. Water Resources Agency of Serang Lusi Juwana River (BPDSA Seluna), Discharge Data Book, Kudus Regency: BPSDA, 2016.

Download references

ACKNOWLEDGMENTS

This project was supported by the Ministry of Research, Technology and Higher Education, Indonesia as part of the grant for Master Leading to Ph.D. Project, with contact number: 4550/UN1-P.III/LT/DIT-LIT/2016. The data analysis has been supported by MIRA-WCU project. The authors express their gratitude to the reviewers for their advice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Widyastuti, Sunarto or Muh Aris Marfai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lintang Nur Fadlillah, Widyastuti, M., Geottongsong, T. et al. Hydrological Characteristics of Estuary in Wulan Delta in Demak Regency, Indonesia. Water Resour 46, 832–843 (2019). https://doi.org/10.1134/S0097807819060101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807819060101

Keywords:

Navigation