Skip to main content
Log in

Modeling Bedload Transport Trajectories along a Sine-Generated Channel

  • HYDROPHYSICAL PROCESSES
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

This study explores the influences of flow discharge and particle size on bedload transport trajectory by applying a depth-averaged two-dimensional model to a 110° sine-generated laboratory flume with wide-and-shallow sections. Calculated results exhibit two erosion regions in a bend: Zone-1—oreside of the point bar near the convex bank and Zone-2—near the apex of the concave bank. Sediments eroded from Zone-1 are mainly transported along the same-side convex bank rather than crossing the channel centerline, indicating the crucial role of longitudinal flow in shaping point bars. Most particles from Zone-2, however, behave more complicated by changing their trajectories with the developing bar-pool topography. Besides, sensitivity analyses indicate that, the shifting of bedload trajectory in the curved channel is not susceptible to particle size while considerably varies with flow discharge. Moving particles in a meandering channel are ultimately constrained within the belt of “concave bank‒crossing bar‒concave bank” after the bend topography is fully developed and the bed deformation reaches a dynamic equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. ASCE, River width adjustment. I: Processes and mechanisms, J. Hydraul. Eng., 1998, vol. 124, no. 9, pp. 881–902.

  2. Balachandar, R. and Bhuiyan, F., Higher-order moments of velocity fluctuations in an open-channel flow with large bottom roughness, J. Hydraul. Eng., 2007, vol. 133, no. 1, pp. 77–87. https://doi.org/10.1061/(ASCE)07339429(2007)133:1(77)

    Article  Google Scholar 

  3. Balachandar, R. and Patel, V.C., Rough wall boundary layer on plates in open channels, J. Hydraul. Eng., 2002, vol. 128, no. 10, pp. 947–951. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:10(947)

    Article  Google Scholar 

  4. Bolla Pittaluga, M. and Seminara, G., Nonlinearity and unsteadiness in river meandering: a review of progress in theory and modelling, Earth Surf. Processes Landforms, 2011, vol. 36, pp. 20–38. https://doi.org/10.1002/esp.2089

    Article  Google Scholar 

  5. Chen, D. and He, L., Modeling sediment transport in sine-generated meandering channels, EWRI2013, Cicinati, USA, 2013.

    Google Scholar 

  6. Chen, D. and Duan, J.D., Simulating sine-generated meandering channel evolution with an analytical model, J. Hydraul. Res., 2006, vol. 44, no. 3, pp. 363–373. https://doi.org/10.1080/00221686.2006.9521688

    Article  Google Scholar 

  7. Chen, D. and Tang, C.L., Evaluating secondary flows in the evolution of sine-generated meanders, Geomorphology, 2012, vol. 163(SI), pp. 37–44. https://doi.org/10.1016/j.geomorph.2012.04.010

  8. Chen, D., He, L., and Liu, J., Experimental study on sediment transport in meander channels, AGU fall meeting abstracts, 2013.

  9. Chien, N. and Wan, Z., Mechanics of sediment transport, Translated under the guidance of John S. McNown, ASCE Press, 1999.

  10. Chien, N., Zhang, R., and Chou, Z.D., River evolution, Science Press, 1987.

    Google Scholar 

  11. Da Silva, A.M.F., Turbulent flow in sine-generated meandering channels, PhD Thesis, Queen’s Univ., Kingston, Canada. 1995.

  12. Da Silva, A.M.F. and Ei-Tahawy, T., On the location in flow plan of erosion-deposition zones in sine-generated meandering streams, J. Hydraul. Res., 2008, vol. 46, no. S1, pp. 49–60.

    Article  Google Scholar 

  13. Da Silva, A.M.F., El-Tahawy, T., and Tape, W.D., Variations of flow pattern with sinuosity in sine-generated meandering streams, J. Hydraul. Eng., 2006, vol. 132, no. 10, pp. 1003–1014. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:0(1003)

    Article  Google Scholar 

  14. Dolgopolova, E.N., The coefficient of friction in channel flow, Water Resour., 2000, vol. 27, no. 6, pp. 611–616.

    Article  Google Scholar 

  15. Engels, H., Das Flussbau-Labora Torium DerkgL, Techni Schen Hochschule in Dresden, Berlin, 1900.

    Google Scholar 

  16. Friedkin, J., A laboratory study of the meandering of alluvial rivers, US Waterways Experiment Station: Vicksburg, 1945.

    Google Scholar 

  17. He, L. and Chen, D., Modeling curvature- and topography-driven secondary currents in sine-generated meandering channels, EWRI2013, Cicinati, USA, 2013.

    Google Scholar 

  18. Hooke, R., Distribution of sediment transport and shear stress in a meander bend, J. Geol., 1975, vol. 83, no. 5, pp. 543–566. https://doi.org/10.1086/628140

    Article  Google Scholar 

  19. Huang, S.L. and NG, C.O., Hydraulics of a submerged weir and applicability in navigational channels: Basic flow structures, Int. J. Numer. Meth. Eng., 2007, vol. 69, no. 11, pp. 2264–2278. https://doi.org/10.1002/nme.1849

    Article  Google Scholar 

  20. Huang, S.L., Jia, Y.F., Gao, G.H., Chen, Q.W., and Wang, S.S.Y., Numerical comparison of three- and two-dimensional model for modeling meandering channel flow, Proc. 35th IAHR World Congr., 2013, pp. 106–113.

  21. Jia, Y.F. and Wang, S.S.Y., Numerical model for channel flow and morphological change studies, J. Hydraul. Eng., 1999, vol. 125, no. 9, pp. 924–933. https://doi.org/10.1061/(ASCE)07339429(1999)125:9(924)

    Article  Google Scholar 

  22. Jia, Y.F., Wang, S.Y.Y., and Xu, Y.Ch., Validation and application of a 2D model to channels with complex geometry, Int. J. Comput. Eng. Sci., 2002, vol. 3, no. 1, pp. 57–71.

    Article  Google Scholar 

  23. Kantoush, S.A., Bollaert, E., and Schleiss, A.J., Experimental and numerical modelling of sedimentation in a rectangular shallow basin, Int. J. Sedim. Res., 2008, vol. 23, no. 3, pp. 212–232. https://doi.org/10.1016/S1001-6279(08)60020-7

    Article  Google Scholar 

  24. Mathes, G.H., Basic aspects of Stream Meanders, Trans. Amer. GeoPhys Union, 1941, Pt. 111.

  25. Misiura, K. and Czechowski, L., Numerical modeling of sedimentary structures in rivers on Earth and Titan, Geol. Q., 2015, vol. 59, no. 3, pp. 565–580. https://doi.org/10.7306/gq.1236

    Google Scholar 

  26. Nassar, M.A., Multi-parametric sensitivity analysis of CCHE2D for channel flow simulations in Nile River, J. Hydro-Environ. Res., 2011, vol. 5, no. 3, pp. 187–195. https://doi.org/10.1016/j.jher.2010.12.002

    Google Scholar 

  27. Nezu, I. and Nakagawa, H., Turbulent in Open-Channel Flow, IAHR Monograph Series, Balkema, Rotterdam, The Netherlands: Taylor & Francis, 1993.

  28. Rostami, M. and Habibi, S., Numerical simulation of local tributary widening impacts on hydro-morphological processes of river confluence using CCHE2D, River Flow 2014, 2014, pp. 1015–1023.

    Google Scholar 

  29. Rui, D.F., Numerical model for circumfluence and movement of sediment in continuous meandering river, PhD Thesis, Sichuan Univ., Sichuan, China, 2005.

  30. Tena, A., Ksiazek, L., Vericat, D. and Batalla, RJ., Assessing the geomorphic effects of a flushing flow in a large regulated river, River Res. Appl., 2013, vol. 29, no. 7, pp. 876–890. https://doi.org/10.1002/rra.2572

    Article  Google Scholar 

  31. Termini, D. and Piraino, M., Experimental analysis of cross-sectional flow motion in a large amplitude meandering bend, Earth Surf. Processes Landforms, 2011, vol. 36, pp. 244–256. https://doi.org/10.1002/esp.2095

    Article  Google Scholar 

  32. Termini, D., Experimental observations of flow and bed processes in large-amplitude meandering flume, J. Hydraul. Eng., 2009, pp. 575–587. https://doi.org/10.1061/(ASCE)HY.19437900.0000046

  33. Termini, D., Momentum transport and bed shear stress distribution in a meandering bend: Experimental analysis in a laboratory flume, Adv. Water Resour., 2015, vol. 81, pp. 128–141. https://doi.org/10.1016/j.advwatres.2015.01.005

    Article  Google Scholar 

  34. Thomson, J., On the flow of water round river bends, Proc. Inst. Mech. Engineers, August 6, 1979.

  35. Wang, B., Experiments of water flow and bed deformation in a flume with consecutive curves, PhD Thesis, Tsinghua Univ., Beijing, China, 2008.

  36. Whiting, P.J. and Dietrich, W.E., Experimental constraints on bar migration through bends—implications for meander wavelength selection, Water Resour. Res., 1993, vol. 29, no. 4, pp. 1091–1102. https://doi.org/10.1029/92WR02356

    Article  Google Scholar 

  37. Whiting, P.J. and Dietrich, W.E., Experimental studies of bed topography and flow patterns in large-amplitude meanders, 1. Observations, Water Resour. Res., 1993, vol. 29, no. 11, pp. 3605–3614. https://doi.org/10.1029/93WR01755

    Article  Google Scholar 

  38. Wu, W.M. and Wang, S.S.Y., Movable bed roughness in alluvial rivers, J. Hydraul. Eng., 1999, vol. 125, no. 12, pp. 1309–1312. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:12(1309)

    Article  Google Scholar 

  39. Wu, W.M., Wang, S.S.Y., and Jia, Y.F., Nonuniform sediment transport in alluvial rivers, J Hydraul. Res., 2000, vol. 38, no. 6, pp. 427–434. https://doi.org/10.1080/00221680009498296

    Article  Google Scholar 

  40. Yalin, M.S., River mechanics, Oxford: Pergamum Press, 1992.

    Google Scholar 

  41. Zeng, Q.H., Bottom sediment problems in curved channels, J. Sediment. Res., 1982, vol. 3, pp. 59–65.

    Google Scholar 

  42. Zhang, H.W. and Lv, X., Bend hydraulics, Beijing: Water Conservancy and Electric Power Press, 1993.

    Google Scholar 

  43. Zhang, R.J. and Xie, B.L., Study on river meander laws, 1st Int. Sympos. River Sedimentation, 1980, vol. 1, pp. 427–436.

    Google Scholar 

  44. Zhuang, J., Zhang J., Huang, D., Zheng, G., and Lai, G., On the characteristics of flow movement in the bending and bifurcated river, Adv. Water Resour. Hydr. Eng., 2009, vols. 1–6, pp. 307–316. https://doi.org/10.1007/978-3-540-89465-0_151

Download references

FUNDING

This study partially supported by (1) National Key R&D Program of China (2017YFC0405203) (2) National Natural Science Foundation of China (Nos. 51 579 230, 41 571 005, 51 109 198, 51 279 192, 51509234, 51 779 242, and 41 330 751), and the “Hundred Talents Program” of Chinese Academy of Sciences is gratefully acknowledged. This paper does not necessarily reflect the view of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li He, Dong Chen, Donatella Termini, Yafei Jia or Yaoxin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li He, Chen, D., Termini, D. et al. Modeling Bedload Transport Trajectories along a Sine-Generated Channel. Water Resour 46, 542–552 (2019). https://doi.org/10.1134/S0097807819040134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807819040134

Keywords:

Navigation