Skip to main content

The Structure of the Net Alongshore Sediment Transport in the Eastern Gulf of Gdansk


The published schemes of the net alongshore sediment transport near the eastern coast of Gdansk Bay have been systematized. Considerable discrepancies have been identified in the structure and localization of the convergence zones of opposite currents. The results of station-based measurements of bottom currents near the Strait of Baltiysk at depths of 6–16 m were used to show that, at winds >6 m/s, the alongshore currents run along the alongshore wind component. The morphodynamic accumulation (filling of the entry corner and abrasion in the shadow zone of the obstacle) and abrasion (orientation of the abrasion depression at the extreme end of the harbor moles) criteria are discussed. The abrasion criterion is shown to work better than the accumulation criterion in determining the net sediment transport in the coastal reaches with a normal or near-normal approach angle of the wave energy flow toward the shore. The specific features of the mechanism of sediment transport from south to north, by-passing Baltiisk harbor moles, from the abrasion to accumulation shore segments are given. Two schemes of the opposite Vistula and Sambian alongshore sediment flows are proposed: before the construction of the entry harbor moles in the Baltic Strait with a vast migration zone near the northern end of the Vistula Spit and after the construction of these moles, which has narrowed this zone and shifted its southern boundary northward toward the moles.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    Agapov, A.P. and Zhindarev, L.A., Particle size distribution in a beach as a characteristic of sediment transport mechanism in the coastal zone of the southeastern Baltic Sea, Litol. Polezn. Iskop., 1990, no. 6, pp. 105–111.

  2. 2

    Aibulatov, N.A., Dinamika tverdogo veshchestva v shel’fovoi zone (Solid Matter Dynamics in the Shelf Zone), Leningrad: Gidrometeoizdat, 1990.

  3. 3

    Aibulatov, N.A., Zhindarev, L.A., and Piskareva, N.A., Sediment transport in the coastal zone of the southeastern Baltic Sea, in Prirodnye osnovy beregozashchity (Natural Principles of Shore Protection), Moscow, 1987, pp. 99–116.

    Google Scholar 

  4. 4

    Babakov, A.N., Alongshore Sediment Transport on the Eastern Coast of the Gulf of Gdansk and the Abrasion Criterion for Assessing the Net Sediment Transport. Accessed March 5, 2019.

  5. 5

    Babakov, A.N., Dynamics of sedimentary matter in the coastal zone of the sea, Neft’ i okruzhayushchaya sreda Kaliningradskoi oblasti (Oil and the Environment in Kaliningrad Oblast), vol. 2, More (Sea), Kadzhoyan, Yu.S., Pichuzhkina, O.E., Sivkov, V.V., Fel’dman, V.N., Eds., 2012, pp. 37–59.

  6. 6

    Babakov, A.N., Spatial-Temporal Structure of Currents and Sediment Migration in the Coastal Zone of Southeastern Baltic (the Sambian Peninsula and the Curonian Spit), Cand. Sci. (Geogr.) Dissertation, Kaliningrad: Kaliningrad State University, 2003, p. 273.

  7. 7

    Babakov, A.N., Characteristic of bottom currents in the Gulf of Gdansk near the entry moles of Baltiisk port by data of field measurements, Uch. Zap. Ross. Geogr. Obshch. (Kaliningrad. otd.), vol. 7., part 1, 2008, G1–G6.

  8. 8

    Babakov, A.N. and Chubarenko, B.V., Variations of continental slope morphometry and sediment lithology along the eastern coast of the Gulf of Gdansk, Uchenie o razvitii morskikh beregov: vekovye traditsii i idei sovremennosti. Materialy konf. v chest’ 100-letiya prof. V.P. Zenkovicha (Theory of Sea Shore Development: Age-Old Traditions and Modern Ideas. Proc. Conf. in Honor of 100 Years of prof. V. P. Zenkevich), St. Petersburg, 2010, pp. 147–149.

  9. 9

    Bass, O.V. and Zhindarev, L.A., Technogenesis in the coastal zone of sandy coasts of inland seas. 1. Effect of hydroengineering activity on coastal zone morphodynamics in the SE Baltic, Geomorfologiya, 2007, no. 4, pp. 17–24.

  10. 10

    Beloshapkov, A.V., Beloshapkova, S.G., and Brasavs, G.Kh., Sediment dynamics on the western coast of the Sambian Peninsula, in Stroenie shel’fa morei SSSR kak osnova otsenki inzhenerno-geologicheskikh uslovii. Sb. nauch. tr. (USSR Marine Shelf Structure as a Basis for Assessing the Geotechnical Conditions. Coll. Sci. Pap.), Riga: VNII MORGEO, 1984, pp. 42–45.

  11. 11

    Bobykina, V.P. and Karmanov, K.V., Shore dynamics at the head of the Gulf of Gdansk and its relationship with anthropogenic impact, Sozdanie iskusstvennykh plyazhei i ostrovov i drugikh sooruzhenii v beregovoi zone morei, ozer i vodokhranilishch. Tr. mezhdunarod. konf. (Creation of Beaches and Islands and Other Structures in the Coastal Zone of Seas, Lakes, and Reservoirs. Proc. Intern. Conf.), Novosibirsk, 2009, pp. 119–124.

  12. 12

    Bogdanov, N.A., Sovershaev, V.A., Zhindarev, L.A., and Agapov, A.P., Evolution in the Concepts of Shore Dynamics in the southeastern Baltic, Geomorfologiya, 1989, no. 2, pp. 62–69.

  13. 13

    Boinagryan, V.R., Dynamics and morphology of the Sambian Peninsula, Okeanologiya, 1966, vol. 6, no. 3, pp. 458–465.

    Google Scholar 

  14. 14

    Boldyrev, V.L., Morphological and lithological indicators of the regions with alongshore flows of sand sediments, Izuchenie osnovnykh zakonomernostei i tendentsii peremeshcheniya beregovoi linii Baltiiskogo morya za poslednie 100 let (Studying the Main Regularities and Trends in Shoreline Displacement in the Baltic Sea over the Past 100 years), Orviku, K., Ed., Tallinn: AN ESSR, 1992, pp. 55–62.

    Google Scholar 

  15. 15

    Boldyrev, V.L., Submarine sand bars as indicators of alongshore sediment transport, Tr. Inst. Okeanol. im. P.P. Shirshova, Akad. Nauk. SSSR, 1961, vol. 48, pp. 193–201.

    Google Scholar 

  16. 16

    Boldyrev, V.L., Grechishchev, E.K., Rybak, O.L., Rybka, V.G., and Shul’gin, Ya.S., Principles of shore protection in the Baltic coast, Baltica, vol. 7, Vilnius, 1982, pp. 187–194.

  17. 17

    Boldyrev, V.L. and Zenkovich, V.P., The Baltic Sea, in Dal’nii Vostok i berega morei, omyvayushchikh territoriyu SSSR (Far East and the Shores of the Seas Surrounding USSR Territory), Moscow: Nauka, 1982, pp. 214–218.

  18. 18

    Boldyrev, V.L., Lashchenkov, V.M., and Ryabkova, O.I., Storm transformations of the shore in Kaliningrad coast of the Baltic Sea, in Voprosy dinamiki beregov i paleogeografii Baltiiskogo moray (Problems of Shore Dynamics and Paleogeography of the Baltic Sea), vol. 1, part 1, Vilnus: Inst. Geogr. Akad. Nauk LitSSR, 1990, pp. 97–129.

  19. 19

    Boldyrev, V.L., Lashchenkov, V.M., and Ryabkova, O.I., Evolution of the western coast of Kaliningrad oblast under intense anthropogenic impact, in Evolyutsiya beregov v usloviyakh podnyatiya urovnya okeana (Shore Evolution at Rising Sea Level), Moscow: Nauka, 1992, pp. 212–225.

  20. 20

    Gidrometeorologicheskii rezhim Vislinskogo zaliva (Hydrometeorological Regime of the Vistula Bay), Lazarenko, N.N. and Maevskii, A., Eds., Leningrad: Gidrometizdat, 1971.

    Google Scholar 

  21. 21

    Dovydenko, L., Kaliningradskii Morskoi kanal (Kaliningrad Seaway Canal), Kaliningrad: Zhivem, 2011.

  22. 22

    Dorfman, Ts.Ya. and Ukmergishkis, A.D., Vetrovoi rezhim na territorii Litovskoi SSR i Kaliningradskoi obl. RSFSR (Wind Regime in the Territory of Litovskaya SSR and Kaliningrad oblast RSFSR), Vilnus: Gospolitnauchizdat, 1964.

  23. 23

    Esyukova, E.E. and Chubarenko, B.V., Trends in changes in the wind regime for the Baltic Sea region, Uch. Zap. Ross. Geogr. Obshch. (Kaliningrad. otd.), 2010, vol. 9, pp. 11–18.

  24. 24

    Zharomskis, R.B., Changes in the coastal zone of the southeastern Baltic under the effect of hydroengineering structures of different types, “Pribrezhnaya Zona morya: Morfolitodinamika i geoekologiya.” XXI mezhdunarod. beregovaya konf. (The Coastal Zone of the Sea: Morpholythodynamics and Geoecology. XXI Intern. Conf.), Kaliningrad: Izd. Kaliningrad Gos. Univ., 2004, pp. 240–244.

  25. 25

    Zhindarev, L.A., Khabidov, A.Sh., and Trizno, A.K., Dinamika peschanykh beregov morei i vnutrennikh vodoemov (Dynamics of Sand Shores of Seas and Inland Water Bodies), Kaplin, P.A., Ed., Novosibirsk: Nauka, 1998.

    Google Scholar 

  26. 26

    Zenkovich, V.P., Some features of the dynamics of the Polish shore of the Baltic Sea, Izv. Vsesoyuz. Geograf. Obshch., 1958, vol. 90, no. 3, pp. 23–31.

    Google Scholar 

  27. 27

    Knaps. R.Ya. Effect of irregularities of shore contour and alongshore sediment transport, Baltica, 1982, no. 7, pp. 195–202.

  28. 28

    Knaps, R.Ya., Protective structures of bar type and sediment motion on sandy coasts, Izv. Akad. Nauk. Latv. SSR, 1952, no. 6, vol. 59, pp. 87–130.

    Google Scholar 

  29. 29

    Knaps, R.Ya., On the principles of designing protection structures on sandy coasts, in Sb. nauch. tr. LenmorNIIproekt. Problemy proektirovaniya, stroitel’stva i ekspluatatsii beregovykh sooruzhenii i morskogo transporta (Coll. Sci. Pap. Leningr. Mor. Nauch. Issled. Proekt. Inst. Problems of Designing, Construction, and Operation of Onshore Structures and Sea Transport), Moscow, 1979, pp. 3–16.

    Google Scholar 

  30. 30

    Knaps, R.Ya., Sediment motion at eastern Baltic Coast, in Razvitie morskikh beregov v usloviyakh kolebatel’nykh dvizhenii zemnoi kory (Development of Sea Shores under Oscillation Motions of the Earth Crust), Tallinn: Valgus, 1966, pp. 21–29.

  31. 31

    Korobova, I.Ya., Dynamics of the relief of the outer part of the coastal zone near Klaipeda and its relationship with the sediment accumulation of the approach channel, Extended Abstract of Cand. Sci. (Geogr.) Dissertation, Vilnus: Vil’nyus. State Univ., 1972.

  32. 32

    Lashchenkov, V.M., Kozhakhmetov, A.B., and Ryabkova, O.I., Deformation of submarine continental slope of a bay in the southeastern coast of the Baltic Sea, Voprosy dinamiki beregov i paleografiya Baltiiskogo moray (Problems of Shore Dynanics and the Paleogeography of the Baltic Sea), Gudyalis, V.K., Ed., Vilnus, 1990, pp. 52–68.

    Google Scholar 

  33. 33

    Leont’ev, I.O., Predicting shoreline evolution on a centennial scale using the example of the Vistula (Baltic) Spit, Oceanology (Engl. Transl.), 2012, vol. 52, no. 5, pp. 700–709.

  34. 34

    Muselyak, S.S., Morpholithodynamics of the coastal zone of a tide-free sea: case study of PNR shores, Extended Abstract of Doctoral (Geogr.) Dissertation, Moscow: Fac. of Geogr., Moscow State University, Moscow, 1988.

  35. 35

    Orlenok, V.V., Kruzhalin, V.I., and Zhindarev, L.A., Geomorphology an ecology of the southeastern coast of the Baltic Sea: problems of its protection, preservation, and management, Pribrezhnaya zona morya: morfodinamika i geoekologiya. XXI Mezhdunarodnaya beregovaya konferentsiya (Coastal Sea Zone: Morphodynamics and Geoecology, XXI Intern. Coast. Conf.), Kaliningrad: Kalin. Gos. Univ., 2004, pp. 7–17.

  36. 36

    Popov, B.A. and Sovershaev, V.A., Principles of the choice of input data of calculating wave energy, in Beregovaya zona morya (Coastal Zone of the Sea), Moscow: Nauka, 1981, pp. 47–52.

  37. 37

    Ryabkova, O.I., Shore dynamics of the Sambian Peninsula and Curonian Spit in the context of shore protection problems, Cand. Sci. (Geogr.) Dissertation, Moscow: Moscow State University, 1987.

  38. 38

    Sergeeva, L.G., Long-term level variations in the eastern coast of the Baltic Sea and their causes, in Kompleksnoe izuchenie prirody Atlanticheskogo okeana (Comprehensive Studies of the Nature of the Atlantic Ocean), Kaliningrad, 1991, pp. 91–93.

    Google Scholar 

  39. 39

    Subotovich, V., Fotogrammetric assessment of the current development of cliff shores of Poland, Izuchenie osnovnykh zakonomernostei i tendentsii peremeshcheniya beregovoi linii Baltiiskogo morya za poslednie 100 let (Studying the Main Regularities and Trends in Baltic Sea Shoreline Motion in the Recent 100 Years), Orviku, K., Ed., Tallinn, 1992, pp. 34–39.

    Google Scholar 

  40. 40

    Scheme of landslide-protection and shore-protection structures on the coast of the Baltic Sea in Kaliningrad oblast, in Prirodnye usloviya i gidrometeorologicheskii rezhim Kaliningradskogo poberezh’ya Baltiki (Natural Conditions and the Hydrometeorological Regime of the Kaliningrad Coast of the Baltic), vol. 1, book 1, Svetlogorsk: Baltberegozashchita, 1999. 130 s.

  41. 41

    Tseslyak, A., Sediment motion along Polish coast, in Izuchenie osnovnykh zakonomernostei i tendentsii peremeshcheniya beregovoi linii Baltiiskogo morya za poslednie 100 let (Studying the Main Regularities and Trends in Shoreline Displacement in the Baltic Sea over the Past 100 years), Orviku, K., Ed., Tallinn, 1992.

  42. 42

    Chechko, V.A., Chubarenko, B.V., Boldyrev, V.L., Bobykina, V.P., Kurchenko, V.Yu., and Domnin, D.A., Dynamics of the marine coastal zone of the sea near the entrance moles of the Kaliningrad Seaway Channel, Water Resour., 2008, vol. 35, no. 6, pp. 652–661.

    Article  Google Scholar 

  43. 43

    Chubarenko, B.V., Navrotskaya, S.E., Stont, Zh.I., and Gushchin, O.A., Variations of the hydrometeorological characteristics at the coast of the Southeastern Baltic Sea by observations over 1996–2009, in Osnovnye kontseptsii sovremennogo beregopol’zovaniya: Monografiya k 90-letiyu zasluzhennogo deyatelya nauki RF V.I. Lymareva (Principal Concepts of the Modern Shore Use: A Monograph to 90-Year Anniversary of the Honored Worker of Science of RF, V.I. Lymarev), Karlin, L.N., Shilin, M.B., Brovko, P.F., Eds., vol. IV, St. Petersburg: Russian State Hydrometeorological University, 2012, pp. 681–691.

  44. 44

    Shishov, N.D., The procedure for determining the characteristics of sediment motion in seas, in Razvitie morskikh beregov v usloviyakh kolebatel’nykh dvizhenii zemnoi kory (Development of Sea Coasts under Oscillatory Motions of the Earth’s Crust), Tallinn: Valgus, 1966, pp. 116–124.

  45. 45

    Analiza procesów hydro- i litodynamicznych w rejonie planowanego przekopu przez Mierzeję Wiślaną i predykcja wpływu przekopu na brzeg morski wraz z oceną intensywności zapiaszczania (zamulania) toru wodnego na odcinku od przekopu do portu w Elblągu, Raport koncowy z realizaccji projektu badawczego rozwojowego (wykonawca Leszek M. Kaczmarek i inny), Gdańsk: IBW PAN, 2008.

  46. 46

    Babakov, A.N., Wind-driven currents and their impact on the morpho-lithology at the eastern shore of the Gulf of Gdansk, Archives of Hydro-Engineering and Environ. Mechanics (AHEM), 2010, vol. 57, no. 2, pp. 85–104.

    Google Scholar 

  47. 47

    Beniston, M., Stephenson, D.B., Christensen, O.B., Ferro, C.A.T., Frei, C., Goyette, S., Halsnaes, K., Holt, T., Jylha, K., Koffi, B., Palutikof, J., Scholl, R., Semmler, T., and Woth, K., Future extreme events in European climate: an exploration of regional climate model projections, J. Climatic Change, 2007, vol. 81, pp. 71–95.

    Article  Google Scholar 

  48. 48

    Bobykina, V., Chubarenko, B., and Karmanov, K., Morphodynamics of the shores of the Vistula Spit (the Baltic Sea) in a period of 2002–2015 by results of in-situ measurements, Abstract Book of the EMECS’11 Sea Coasts XXVI Joint Conf., St. Petersburg: RSHU, 2016.

  49. 49

    Brükmann, R., Beodachtungen über Strand verschiebungen an der Küste des Samlands, III, Palmnicken, Schrift. Phys. ökonom. Ges. Jahrgang: Leipzig; Berlin, 1913, vol. LIV, pp. 119–144.

    Google Scholar 

  50. 50

    Chechko, V.A., Sokolov, A., Chubarenko, B., Dikii, D., and Topchaya, V., Dynamics of sediments disposed in the marine coastal zone near the Vistula Lagoon inlet, south-eastern part of the Baltic Sea, Baltica, 2015, vol. 28, no 2, pp. 189–199.

    Article  Google Scholar 

  51. 51

    Hwung H.H., Utilization of the coastal area, Handbook of Coastal and Ocean Engineering, Kim Y.C., Ed., Los Angeles (USA): World Sci., 2010, pp. 953–969.

    Google Scholar 

  52. 52

    Karmanov, K.V., Burnashov, E.M., and Chubarenko, B.V., Contemporary dynamics of the sea shore of the Kaliningrad oblast, Arch. Hydro-Eng. Environ. Mech. (AHEM), 2018, vol. 65, no. 2, pp. 143–159.

    Google Scholar 

  53. 53

    Longuet-Higgins, M.S., Longshore currents generated by obliquely incident sea waves, P. 1, 2, J. Geophys. Res., 1970, vol. 75, no. 33, pp. 6778–6801.

    Article  Google Scholar 

  54. 54

    Meier, H.E.M., Broman, B., and Kjellstrom, E., Simulated sea level in past and future climates of the Baltic Sea, Clim. Res., 2004, vol. 27, pp. 59–75.

    Article  Google Scholar 

  55. 55

    Ostrowski, R., Pruszak, Z., Babakov, A., and Chubarenko, B., Anthropogenic effects on coastal sediment fluxes in a nontidal gulf system, J. Waterway, Port, Coastal, Ocean Eng., 2012, vol. 138, no. 6, pp. 491–500.

    Article  Google Scholar 

  56. 56

    Ostrowski, R. and Pruszak, Z., Variability of hydrodynamic and lithodynamic coastal processes in the east part of the Gulf of Gdansk, Arch. Hydro-Eng. Environ. Mech. (AHEM), 2010, vol. 57, no. 2, pp. 139–153.

    Google Scholar 

  57. 57

    Pratje, O., Der Verbleib des Abbruchsmaterials der Samlandkuste, Schr. d. phys. okon. Ges. Konigsberg, 1932, pp. 5–50.

    Google Scholar 

  58. 58

    Rozynski, G., Wave climate in the Gulf of Gdańsk vs. open Baltic Sea near Lubiatowo, Poland, Arch. Hydro-Eng. Environ. Mech. (AHEM), 2010, vol. 57, no. 2, pp. 167–176.

    Google Scholar 

  59. 59

    Tidemann, B., Über Wandern des Sandes und Küstenraum des Samlands, Bauwesen, 1930, pp. 199–212.

    Google Scholar 

  60. 60

    Tornquist, A., Geologie von Ostpreussen, Berlin, 1910.

    Google Scholar 

  61. 61

    Zaromskis, R., Impact of harbour moles and access channels on the South-East Baltic shore zone, Geografija, 2007, vol. 43, no. 1, pp. 12–20.

    Google Scholar 

  62. 62

    Zaromskis, R., Baltijos juros uostai, Vilnius, 2008.

    Google Scholar 

Download references


The authors are grateful to N.S. Lyadvik, Yu.P. Byn’kov, and A.V. Shusharin (Rosmorport) for the discussion of the features of configuration and the characteristics of the abrasion depression.


The collection of data was carried out under division no. 0149-2018-0012/149-2019-0013 of the Governmental Assignment to the Institute of Oceanology, Russian Academy of Sciences; and the analysis of sediment flows was supported by the Russian Foundation for Basic Research, project no. 18-05-01145.

Author information



Corresponding authors

Correspondence to A. N. Babakov or B. V. Chubarenko.

Additional information

Translated by G. Krichevets

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Babakov, A.N., Chubarenko, B.V. The Structure of the Net Alongshore Sediment Transport in the Eastern Gulf of Gdansk. Water Resour 46, 515–529 (2019).

Download citation


  • net sediment flow
  • measurement
  • the Gulf of Gdansk
  • the Baltic Sea