Skip to main content
Log in

An Efficient Method for Inverse Modeling of Soil Evaporation: Rationale and Numerical Example

  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

An initial–boundary value problem for the one-dimensional nonlinear parabolic second-order partial differential equation that describes water movement in soil is considered. The inverse problem is to restore a boundary condition (evaporation) based on the comparison of modeled values of soil moisture at various points with some prescribed values. A criterion of the proximity of the selected evaporation to its true value is the mean-square deviation of the prescribed values of soil moisture at various points from the simulated soil moisture values corresponding to the selected evaporation. A numerical solution of a discretized optimization problem is investigated. The cases of accurate and inaccurate data are considered. The results of the numerical experiments are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCIES

  1. Aida-Zade, K.R. and Evtushenko, Yu.G., Fast automatic differentiation on a computer, Mathematical Modeling, 1989, vol. 1, no. 1, pp. 121–139.

    Google Scholar 

  2. Cheremisinov, A.Yu., Zherdev, V.N., and Cheremisinov, A.A., The dynamics of climate, water balances, and resources of the Central Chernozem Region, Voronezh: Voronezh. Gos. Agrarn. Univ., 2013. [in Russian].

    Google Scholar 

  3. Dikusar, V.V. and Zasukhin, S.V., Application of fast automatic differentiation in the soil surface evaporation problem, Herald Bauman Mos. State Tech. Univ., Nat. Sci., 2016, no. 6, p. 42–55.

  4. Gelfan, A.N., Muzylev, E.L., Uspenski, A.B., Startseva, Z.P., Uspenskii, S.A., and Romanov, P.Yu., A remote sensing based land surface model: development and application for assessing intra-annual variability of water and heat balances of a vast region, Sovrem. Probl. Distants. Zondir. Zemli Kosmosa, 2012, vol. 9, no. 5, pp. 183–191.

    Google Scholar 

  5. Ivanov, N.N., Determination of evaporation quantities, Izv. Vses. Geogr. O-va, 1954, vol. 86, no. 25, pp. 189–196.

    Google Scholar 

  6. L’gov, G.K., Irrigated Agriculture, Moscow: Kolos, 1979.

    Google Scholar 

  7. Mezentsev, V.S. and Karnatsevich, I.V., Moisture Conditions of the West Siberian Plain, Leningrad: Gidrometeoizdat, 1969.

  8. Albring, T., Zhou, B., Gauger, N., and Sagebaum, M., An aerodynamic design framework based on algorithmic differentiation, ERCOFTAC Bull., 2015, vol. 102, pp. 10–16.

    Google Scholar 

  9. Abbaspour, K.C., Schulin, R., and van Genuch-ten, M.Th., Estimating unsaturated soil hydraulic parameters using ant colony optimization, Adv. Water Resour., 2001, vol. 24, pp. 827–841.

    Article  Google Scholar 

  10. Bendtsen, C. and Stauning, O., FADBAD, a flexible C++ package for automatic differentiation, Technical Report IMM–REP–1996–17, Department of Mathematical Modelling, Denmark: Technical University of Denmark, 1996.

  11. Eching, S.O. and Hopman, J.W., Optimization of hydraulic functions from transient outflow and soil water pressure head data, Soil. Sci. Soc. Am. J., 1993, vol. 57, pp. 1167–1175.

    Article  Google Scholar 

  12. Evtushenko, Yu., Automatic differentiation viewed from optimal control theory, in Automatic Differentiation of Algorithms. Theory, Implementation and Application, Griewank, A. and Corliss, G.F., Eds., Philadelphia: SIAM, 1991. pp. 25–30.

    Google Scholar 

  13. Evtushenko, Yu., Computation of exact gradients in distributed dynamic systems, Optimiz. Methods Soft., 1998, vol. 9, pp. 45–75.

    Article  Google Scholar 

  14. Genuchten van, M.Th., Leij, F.J., and Yates, S.R., The RETC code for quantifying the hydraulic functions of unsaturated soils, EPA Report 600/2-91/065, Riverside, California: U.S. Salinity Lab., USDA, ARS, 1991.

  15. Genuchten van, M.Th., A closed form equation for predicting the hydraulic conductivity of unsaturated soils, Soil. Sci. Soc. Am. J., 1980, vol. 44, pp. 892–898.

  16. Automatic Differentiation of Algorithms. Theory, Implementation and Application, Griewank, A. and Corliss, G.F., Eds., Philadelphia: SIAM, 1991.

    Google Scholar 

  17. Hogan, R.J., Fast reverse-mode automatic differentiation using expression templates in C++, ACM Transactions on Mathematical Software (TOMS), 2014, vol. 40, no. 4, Article 26.

    Article  Google Scholar 

  18. Katata, G., Haruyasu, N., Hiromasa, U., Agam, N., and Berliner, P.R., Development of a land surface model including evaporation and adsorption processes in the soil for the land-air exchange in arid regions, J. Hydrometeor., 2007, vol. 8, no. 6, pp. 1307–1324.

    Article  Google Scholar 

  19. Kool, J.B. and Parker, J.C., Analysis of the inverse problem for transient unsaturated flow, Water Resour. Res., 1999, vol. 24, no. 6, pp. 817–830.

    Article  Google Scholar 

  20. Martens, B., Miralles, D., Lievens, H., Fernandez-Prieto, D., and Verhoest, N., Improving terrestrial evaporation estimates over continental Australia through assimilation of SMOS soil moisture, Int. J. Appl. Earth Observ. Geoinform., 2016, vol. 48 (Spec. Iss.), pp. 146–162.

    Article  Google Scholar 

  21. Mertens, J., Madsen, H., Kristensen, M., Jacques, D., and Feyen, J., Sensitivity of soil parameters in unsaturated zone modeling and the relation between effective, laboratory and in situ estimates, Hydrol. Processes, 2005, vol. 19, no. 8, pp. 1611–1633.

    Article  Google Scholar 

  22. Mertens, J., Stenger, R., and Barkle, G.F., Multiobjective inverse modeling for soil parameter estimation and model verification, Vadose Zone J., 2006, vol. 5, no. 3, pp. 917–933.

    Article  Google Scholar 

  23. Miralles, D.G., Holmes, T.R.H., de Jeu, R.A.M., Gash, J.H., Meesters, A.G.C.A., and Dolman, A.J., Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 2011, vol. 15, pp. 453–469.

    Article  Google Scholar 

  24. Monteith, J., Evaporation and environment, Proceedings of the 19th Symposium of the Society of Experimental Biology, Cambridge: Cambridge University Press, 1965, pp. 205–234.

  25. Pan, L.H. and Wu, L.S., A hybrid global optimization method for inverse estimation of hydraulic parameters: annealing–simplex method, Water Resour. Res., 1998, vol. 34, pp. 2261–2269.

    Article  Google Scholar 

  26. Penman, H.L., Natural evaporation from open water, bare soil and grass, Proc. Royal Society, 1948, vol. 193, pp. 120–145.

    Article  Google Scholar 

  27. Priestley, C.H.B. and Taylor R.J., On the assessment of surface heat flux and evaporation using large–scale parameters, Mon. Weather Rev., 1972, vol. 100, no. 2, pp. 81–92.

    Article  Google Scholar 

  28. Romano, N. and Santini, A., Determining soil hydraulic functions from evaporation experiments by a parameter estimation approach: experimental verifications and numerical studies, Water Resour. Res., 1999, vol. 35, no. 11, pp. 3342–3359.

    Article  Google Scholar 

  29. Savenije, H.H.G., Determination of evaporation from a catchment water balance at a monthly time scale, Hydrol. Earth Syst. Sci., 1997, vol. 1, no. 1, pp. 93–100.

    Article  Google Scholar 

  30. Simunek, J. and van Genuchten, M.Th., Estimating unsaturated soil parameters from multiple tension disc infiltrometer data, Soil Sci., 1997, vol. 162, no. 6, pp. 383–398.

    Article  Google Scholar 

  31. Takeshita, Y., Parameter estimation of unsaturated soil hydraulic properties from transient outflow experiments using genetic algorithms, in Proc. Int. Worksh., Riverside, CA, 22–24 Oct. 1997, New York: U.S. Salinity Lab., Riverside, CA, 1999, pp. 761–768.

  32. Vrugt, J.A., Weerts, A.H., and Bouten, W., Information content of data for identifying soil hydraulic parameters from outflow experiments, Soil. Sci. Soc. Am. J., 2001, vol. 65, pp. 19–27.

    Article  Google Scholar 

  33. Vrugt, J.A. and Bouten, W., Validity of first–order approximations to describe parameter uncertainty in soil hydrologic models, Soil. Sci. Soc. Am. J., 2002, vol. 66, no. 6, pp. 1740–1752.

    Article  Google Scholar 

  34. Vrugt, J.A., Gupta, H.V., Bouten, W., Bastidas, L. A., and Sorooshian, S., Effective and efficient algorithm for multi-objective optimization of hydrologic models, Water Resour. Res., 2003, vol. 39, no. 8, pp. 1214–1232.

    Google Scholar 

  35. Yang, X. and You, X., Estimating parameters of van Genuchten model for soil water retention curve by intelligent algorithms, Appl. Math. Inf. Sci., 2013, vol. 7, no. 5, pp. 1977–1983.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Zasukhin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zasukhin, S.V. An Efficient Method for Inverse Modeling of Soil Evaporation: Rationale and Numerical Example. Water Resour 45 (Suppl 2), 110–118 (2018). https://doi.org/10.1134/S0097807818060301

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807818060301

Keywords:

Navigation