Skip to main content
Log in

Modelling Water Balance Components of River Basins Located in Different Regions of the Globe

  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Three river basins—the Lena, Ganges, and Darling—were selected to study the possibility of reproducing water balance components of river basins, located in different regions of the globe under a wide variety of natural conditions, with the use of the land surface model SWAP and global data sets. Input data including meteorological forcings and land surface parameters were prepared on the basis of the WATCH and ECOCLIMAP global data sets, respectively. Long-term variations of the water balance components of the Lena, Ganges, and Darling river basins were simulated by the SWAP model. The results of simulations were compared with observations. In addition, the natural variability of river runoff caused by the weather noise of atmospheric characteristics was estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Australian Water Resources Assessment 2012. Australian Government. Bureau of Meteorology. [site]. http://www.bom.gov.au/water/awra/2012/. Accessed March 3, 2016.

  2. Avstraliya. Osobennosti rek, ozer i pochv Avstralii (Australia. Characteristics of Rivers, Lakes and Soils of Australia). http://i-avstraliya.ru/etnicheskoe-razvitie-avstralii/osobennosti-rek-ozer-i-pochv-avstralii.html. Accessed November 1, 2016 (in Russian).

  3. Beven K., Distributed models and uncertainty in flood risk management, in: Flood Risk Science and Management, Wiley, C. Ed., Lancaster EPrints. Lancaster, 2011, pp. 291–312. ISBN: 9781405186575.

  4. Boone, A., Habets, F., Noilhan, J., Clark, D., Dirmeyer, P., Fox, S., Gusev, Y., Haddeland, I., Koster, R., Lohmann, D., Mahanama, S., Mitchell, K., Nasonova, O., Niu, G.-Y., Pitman, A., Polcher, J., Shmakin, A.B., Tanaka, K., van den Hurk, B., Verant, S., Verseghy, D., Viterbo, P., and Yang, Z.-L., The Rhone-aggregation land surface scheme intercomparison project: An overview, J. Clim., 2004, vol. 17, pp. 187–208.

    Article  Google Scholar 

  5. Champeaux, J.L., Masson, V., and Chauvin, F., ECOCLIMAP: a global database of land surface parameters at 1 km resolution, Meteorol. Appl., 2005, no. 12, pp. 29–32. doi 10.1017/S1350482705001519

  6. Clapp, R.B., Hornberger, G.M., Empirical equations for some soil hydraulic properties, Water Resour. Res., 1978, vol. 14, no. 4, pp. 601–604.

    Article  Google Scholar 

  7. Cosby, B., Hornberger, G., Clapp, R., and Ginn, T., A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils, Water Resour. Res., 1984, no. 20, pp. 682–690.

  8. Darling (river), Wikipedia, [site]. https://en.wikipedia.org/wiki/Darking_(reka). Accessed January 2, 2016.

  9. Darling River in Australia [site]. http://great-travel.ru/2270-reka-darling.html. Accessed January 2, 2016.

  10. Duan, Q., Sorooshian, S., Gupta, V.K., Effective and efficient global optimization for conceptual rainfall runoff models, Water Resour. Res., 1992, vol. 28, no. 4, pp. 1015–1031.

    Article  Google Scholar 

  11. Farakka Barrage, Wikipedia [site]. https://en.wikipedia.org/wiki/Farakka_Barrage. Accessed January 26, 2016.

  12. Fizicheskaya geografiya materikov i okeanov. Evraziya: Yugo-Vostochnaya Aziya. Indo-Gangskaya ravnina (Physical geography of continents and oceans. Eurasia: Southeast Asia. Indo-Gangetic plain) [site]. http://www.geonature.ru/worldgeo/05-8-8-2.htm. Accessed: January 10, 2016.

  13. Ganges, Wikipedia [site]. URL: https://en.wikipedia.org/wiki/Ganges. Assessed January 20, 2016.

  14. Gelfan, A., Semenov, V.A., Gusev, E., Motovilov, Y., Nasonova, O., Krylenko, I., and Kovalev, E., Large-basin hydrological response to climate model outputs: uncertainty caused by the internal atmospheric variability, Hydrol. Earth Syst. Sci., 2015, no. 19, pp. 2737–2754.

  15. Gusev, Ye.M. and Nasonova, O.N., The Land Surface Parameterization scheme SWAP: description and partial validation, Glob. Planet. Change, 1998, vol. 19, nos. 1−4, pp. 63–86.

    Article  Google Scholar 

  16. Gusev, E.M. and Nasonova, O.N., Parameterization of heat and water exchange on land surface for coupling hydrologic and climate models, Water Resour., 1998, vol. 25, no 4, pp. 383–393.

    Google Scholar 

  17. Gusev, E.M. and Nasonova, O.N., Modeling of land surface heat and water exchange on a regional scale, Water Resour., 2000, vol. 27, no. 1, pp. 27–40.

    Google Scholar 

  18. Gusev, E.M. and Nasonova, O.N., Parameterization of heat and moisture transfer in the groundwater–soil–plant (snow) cover–atmosphere system for territories with continental climate, Eurasian Soil Sci., 2000, vol. 33, no 6, pp. 641–653.

    Google Scholar 

  19. Gusev, E.M., Nasonova, O.N., Parameterization of heat and moisture transfer processes in ecosystems of boreal forests, Izv., Atmos. Ocean. Phys., 2001, vol. 37, no. 2, pp. 167–185.

    Google Scholar 

  20. Gusev, E.M. and Nasonova, O.N., Modelirovanie teplo- i vlagoobmena poverkhnosti sushi s atmosferoi (Modeling of Heat and Water Exchange between the Land Surface and the Atmosphere), Moscow: Nauka, 2010.

    Google Scholar 

  21. Gusev, E.M. and Nasonova, O.N., The certificate of state registration of computer program No. 2015662644 SWAP (Soil Water–Atmosphere–Plants). The copyright holder is the Institute of Water Problems, Russian Academy of Sciences. Date of state registration of the computer program: November 30, 2015.

  22. Gusev, E.M., Nasonova, O.N., and Dzhogan, L.Ya., Physically based modeling of many-year dynamics of daily streamflow and snow water equivalent in the Lena R. basin, Water Resour., 2016, vol. 43, no. 1, pp. 21–32.

    Article  Google Scholar 

  23. Gusev, E.M., Nasonova, O.N., Dzhogan, L.Ya., and Kovalev, E.E., The application of the land surface model for calculating river runoff in high latitudes, Water Resour., 2008, vol. 35, no. 2, pp. 171–184.

    Article  Google Scholar 

  24. Gusev, Ye.M., Nasonova, O.N., Dzhogan, L.Ya., and Kovalev, E.E., Scenario forecasting changes in the water balance components of the Olenek and Iindigirka river basins due to possible climate change, Proc. IAHS, 2015, no. 371, pp. 13–15.

  25. Gusev, E.M., Nasonova, O.N., and Kovalev, E.E., Modeling the components of heat and water balance for the land surface of the globe, Water Resour., 2006, vol. 33, no. 6, pp. 616–627.

    Article  Google Scholar 

  26. Gusev, Y.M., Nasonova, O.N., Kovalev, E.E., and Aizel, G.V., Modelling river runoff and estimating its weather-related uncertainty for 11 large-scale rivers located in different regions of the globe, Hydrol. Res., 2018. vol. 49. no. 4, pp. 1072–1087, doi.org/ 10.2166/ nh.2017.015

    Google Scholar 

  27. Gusev, E.M., Nasonova, O.N., Kovalev, E.E., and Semenov, V.A., Uncertainty of calculations and projections of the components of the water balance of river basins, caused by climatic noise, Nauchnoe obespechenie realizatsii “Vodnoi strategii Rossiyskoy Federatsii na period do 2020 goda” (Proc. Conf. “Scientific Support for the Implementation of the Water Strategy of the Russian Federation for the Period until 2020”), 2015, vol. 1, pp. 128–134, Petrozavodsk: Karelian Research Center, Russian Academy of Sciences.

  28. Iizumi, T., Luo, J.-J., Challinor, A.J., Sakurai, G., Yokozawa, M., Sakuma, H., Brown, M.E., and Yamagata, T., Impacts of El Niño Southern Oscillation on the global yields of major crops, Nat. Commun., vol. 5, p. 3712, doi 10.1038/ncomms4712

  29. Integrating Worldwide CO2, Water and Energy Flux Measurements [site]. URL: http://www.fluxnet.ornl.gov/. Accessed January 19, 2016.

  30. Kanae, S., Nishio, K., Oki, T., and Musiake, K., Hydrograph estimations by flow routing modeling from AGCM output in major basins of the world, Ann. J. Hydraulic Eng., 1995, vol. 39, pp. 97–102.

    Article  Google Scholar 

  31. Lohmann, D., Lettenmaier, D.P., Liang, X., Wood, E.F., Boone, A., Chang, S., Chen, F., Dai, Y., Desborough, C., Dickinson, R.E., Duan, Q., Ek, M., Gusev, Ye.M., Habets, F., Irannejad, P., Koster, R., Mitchell, K.E., Nasonova, O.N., Noilhan, J., Schaake, J., Schlosser, A., Shao, Y., Shmakin, A.B., Verseghy, D., Warrach, K., Wetzel, P., Xue, Y., Yang, Z.-L., and Zeng, Q.-C., The project for intercomparison of land-surface parameterization schemes (PILPS) phase-2(c) Red-Arkansas River basin experiment: 3. Spatial and temporal analysis of water fluxes, Glob. Planet.Change, 1998, vol. 19, nos. 1–4, pp. 161–179.

    Article  Google Scholar 

  32. Masson, V., Champeaux, J.-L., Chauvin, F., Meriguet, C., and Lacaze, R., A Global database of land surface parameters at 1-km resolution in meteorological and climate models, J. Clim., 2003, vol. 16, pp. 1261–1282.

    Article  Google Scholar 

  33. McPhaden, M.J., Zebiak, S.E., and Glantz, M.H., ENSO as an integrating concept in earth science, Science, 2006, vol. 314, no. 5806, pp. 1740–1745.

    Article  Google Scholar 

  34. Nash, J.E., Sutcliffe, J.V., River flow forecasting through conceptual models: 1. A discussion of principles, J. Hydrol., 1970, vol. 10, no. 3, pp. 282–290.

    Article  Google Scholar 

  35. Oki, T., Validating the runoff from LSP-SVAT models using a global river routing network by one-degree mesh, Proc. 13th Conf. on Hydrology., N.Y.: Amer. Met. Soc., 1997, pp. 319–322.

  36. Peel, M.C. and Blöschl, G., Hydrologic modelling in a changing world, Progr. Phys. Geogr., 2011, vol. 35, no. 2, pp. 249–261.

    Article  Google Scholar 

  37. Schlosser, C.A., Slater, A.G, Robock, A., Pitman, A.J., Vinnikov, K.Ya., Henderson-Sellers, A., Speranskaya, N.A., Mitchell, K., Boone, A., Braden, H., Chen, F., Cox, P., de Rosnay, P., Desborough, C.E., Dickinson, R.E., Dai, Y.-J., Duan, Q., Entin, J., Etchevers, P., Gedney, N., Gusev, Y.M., Habets, F., Kim, J., Koren, V., Kowalczyk, E., Nasonova, O.N., Noilhan, J., Schaake, J., Shmakin, A.B., Smirnova, T. G., Verseghy, D., Wetzel, P., Xue, Y., and Yang, Z.-L., Simulations of a boreal grassland hydrology at Valdai, Russia: PILPS Phase 2(d), Mon. Weather Rev., 2000, vol. 128, no. 2, pp. 301–321.

    Article  Google Scholar 

  38. Singh, V.P. and Woolhiser, D.A., Mathematical modeling of watershed hydrology, J. Hydrol. Eng., 2000, vol. 7, pp. 270–292.

    Article  Google Scholar 

  39. Syed, T.H., Webster, P.J., and Famiglietti, J.S., Assessing variability of evapotranspiration over the Ganga river basin using water balance computations, Water Resour. Res., 2014, vol. 50, pp. 2551–2565.

    Article  Google Scholar 

  40. Wang, B. and Chan, J., How strong ENSO events affect tropical storm activity over the western North Pacific, J. Clim., 2002, vol. 15, pp. 1643–1659.

    Article  Google Scholar 

  41. Ward, P.J., Eisner, S., Dettinger, M.D., and Kummu, M., Annual flood sensitivities to El Niño-Southern Oscillation at the global scale, Hydrol. Earth Syst. Sci., 2014, vol. 18, pp. 47–66.

    Article  Google Scholar 

  42. Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and Schewe, J., The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework, PNAS, 2013, vol. 111, no. 9, pp. 3228–3232.

    Article  Google Scholar 

  43. Weedon, G.P., Gomes, S., Viterbo, P., Shuttleworth, W.J., Blyth, E., Österle, H., Adam, J.C., Bellouin, O., and Best, M., Creation of the WATCH Forcing Data and its use to assess global and regional reference crop evaporation over land during the twentieth century, J. Hydrometeorol., 2011, vol. 12, pp. 823–848.

    Article  Google Scholar 

  44. Wood, E.F., Lettenmaier, D.P., Liang, X., Lohmann, D., Boone, A., Chang, S., Chen, F., Dai, Y., Dickinson, R.E., Duan, Q., Ek, M., Gusev, Ye.M., Habets, F., Irannejad, P., Koster, R., Mitchell, K.E., Nasonova, O.N., Noilhan, J., Schaake, J., Schlosser, A., Shao, Y., Shmakin, A.B., Verseghy, D., Warrach, K., Wetzel, P., Xue, Y., Yang, Z.-L., and Zeng, Q.-C., The project for intercomparison of land-surface parameterization schemes (PILPS) phase-2(c) Red-Arkansas River basin experiment: 1. Experiment description and summary intercomparisons, Glob. Planet. Change, 1998, vol. 19, no. 1–4, pp. 115–135.

    Article  Google Scholar 

  45. Wu, H., Kimball, J.S., Li, H., Huang, M., Leung, L.R., and Adler, R.F., A new global river network database for macroscale hydrologic modeling, Water Resour. Res., 2012, vol. 48, no. 9, W09701.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Russian Science Foundation, project no. 16-17-10039 (the Sections: “A priori land surface parameters,” “Results of simulating river runoff and evapotranspiration” and “Natural (sourced from weather noise) uncertainty of river runoff”) and project no. 14-17-00700 (the Sections “Schematization of the selected river basins for simulating water balance components” and “Meteorological forcing data”). The authors are grateful to the staff of the Global Runoff Data Center (D-56068 Koblenz, Germany) for providing materials on the flow of the rivers Lena, Ganges and Darling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Gusev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, E.M., Nasonova, O.N., Kovalev, E.E. et al. Modelling Water Balance Components of River Basins Located in Different Regions of the Globe. Water Resour 45 (Suppl 2), 53–64 (2018). https://doi.org/10.1134/S0097807818060246

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807818060246

Keywords:

Navigation