Effect of a Flood in the Amur River on Organic Matter Dynamics in Groundwater


The space and time dynamics of organic matter concentration in groundwater in the Tungusskoe deposit during the historical 2013 flood in the Amur River is discussed. For comparison analysis, several methods for determining the quantitative characteristics of organic matter (spectrophotometry, gas-chromatographic mass spectrometry, and high-performance liquid chromatography) were applied to different layers of an aquifer at different distances from the shore line. The genesis of many organic substances is due to the inflow of river filtrate and surface water from the inundated floodplain. In the post-flood 2014, groundwater showed a decrease in the total amount of organic components and the presence of low-molecular hydrocarbons, diphenylamine, cosanes, phenanthrene, naphthalene, and derivatives of stearic and palmitic acids. Toxic methyl benzene was identified in most wells.

This is a preview of subscription content, access via your institution.


  1. 1.

    Gabov, D.N., Beznosikov, V.A., Kondratenok, B.M., and Yakovleva, E.V., Formation of polycyclic aromatic hydrocarbons in northern and middle taiga soils, Eurasian Soil. Sci., 2008, no. 11, pp. 1180–1188.

    Article  Google Scholar 

  2. 2.

    Danilov-Danil’yan, V.I., Gel’fan, A.N., Motovilov, Yu.G., and Kalugin, A.S., Disastrous flood of 2013 in the Amur Basin: genesis, recurrence assessment, simulation results, Water Resour., 2014, vol. 41, no. 2, pp. 115–125.

    Article  Google Scholar 

  3. 3.

    Danilov-Danil’yan, V.I. and Khranovich, I.L., Upravlenie vodnymi resursami. Soglasovanie strategii vodopol’zovaniya (Water Resources Management: Coordination of Water Use Strategy), Moscow: Nauch. mir, 2010.

    Google Scholar 

  4. 4.

    Kondrat’eva, L.M., Andreeva, D.V., and Golubeva, E.M., Influence of large tributaries on biogeochemical processes in the Amur River, Geogr. Nat. Resour., 2013, no. 2, pp. 129–136.

    Article  Google Scholar 

  5. 5.

    Kontorovich, A.E., Shvartsev, S.L., Zuev, V.A., Rasskazov, N.M., and Turov, Yu.P., Organic trace contaminants in fresh natural waters from the drainage basins of Tom’ and Upper Ob’ Rivers, Geochem. Int., 2000, no. 5, pp. 480–490.

    Google Scholar 

  6. 6.

    Krainov, S.R., Ryzhenko, B.N., and Shvets, V.M., Geokhimiya podzemnykh vod. Teoreticheskie, prikladnye i ekologicheskie aspekty (Groundwater Geochemistry: Theoretical, Applied, and Environmental Aspects), Moscow: Nauka, 2004.

    Google Scholar 

  7. 7.

    Kulakov, V.V., Geokhimiya podzemnykh vod Priamur’ya (Groundwater Geochemistry in Priamur’e), Khabarovsk: Inst. Vod. Ekol. Probl. Dal’nevost. Otd. Ross. Akad. Nauk, 2011.

    Google Scholar 

  8. 8.

    Kulakov, V.V. and Andreeva, D.V., Dissolved gases in groundwater of the Amur–Tungusskoe deposit, Tikhookean. Geol., 2016, vol. 35, no. 2, pp. 83–93.

    Google Scholar 

  9. 9.

    Kulakov, V.V., Kondrat’eva, L.M., and Golubeva, E.M., Geological and biogeochemical prerequisites for high Fe and Mn contents in the Amur River water, Russ. J. Pac. Geol., 2010, vol. 29, no. 6, pp. 510–519.

    Article  Google Scholar 

  10. 10.

    Kulakov, V.V., Steblevskii, V.I., Domnin, K.V., Teslya, V.G., and Kherlittsius, I., Pilot operation of groundwater treatment facility at the Tungusskii water intake, Vodosnabzh. Sanit. Tekh., 2012, no. 7, pp. 29–35.

    Google Scholar 

  11. 11.

    Lapin, G.G. and Zhirkevich, A.N., Characteristic of Amur Basin and the operation regimes of the Zeya and Bureya hydropower plants during the passage of 2013 flood, Gidrotekhn. Stroit., 2014, no. 1, pp. 2–11.

    Google Scholar 

  12. 12.

    Levshina, S.I., The role of humic acids in migration of metals in river water in Amur Region, Water Resour., 2015, vol. 42, no. 6, pp. 810–820.

    Article  Google Scholar 

  13. 13.

    Mokhov, I.I., Chon, V.Ch., Timazhev, A.V., Chernokul’skii, A.V., and Semenov, V.A., Hydrological anomalies and trends in changes in the Amur Basin in the context of climate changes, in Ekstremal’nye pavodki v basseine r. Amur: prichiny, prognozy, rekomendatsii (sb. dokladov) (Extreme Floods in Amur R. Basin: Causes, Forecasts, Recommendations (Coll. of Reports)), Moscow: Rosgidromet, 2014, pp. 81–120.

    Google Scholar 

  14. 14.

    Navodnenie-2013 (Flood 2013), Talakan: RusGidro, 2014.

  15. 15.

    Nizamutdinova, N.R., Kutliakhmetov, A.N., Shaidulina, G.F., Safarova, V.I., and Dokukin, Yu.V., Assessing the environmental effect of gold leaching, Voda Khim. Ekol., 2014, no. 10, pp. 8–15.

    Google Scholar 

  16. 16.

    Rapoport, V.L. and Kondrat’eva, L.M., Pollution of the Amur River with anthropogenic and natural organic substances, Contemp. Probl. Ecol., 2008, no. 3, pp. 377–386.

    Article  Google Scholar 

  17. 17.

    Shesterkin, V.P., Centennial variation in the chemical composition of river water in the Khabarovsk water node, Russ. J. Pac. Geol., 2010, vol. 29, no. 2, pp. 187–193.

    Article  Google Scholar 

  18. 18.

    Shesterkin, V.P., Variations of Amur water chemistry during the historical 2013 flood, Water Resour., 2016, vol. 43, no. 3, pp. 495–503.

    Article  Google Scholar 

  19. 19.

    Shtengelov, R.S., On the possibility to reduce the pollution risk of riparian groundwater intakes, Vodosnabzh. Sanit. Tekh., 2015, no. 4, pp. 38–44.

    Google Scholar 

  20. 20.

    Faktory formirovaniya kachestva vody na Nizhnem Amure (Factors of Water Quality Formation in the Lower Amur), Kondrat’eva, L.M., Ed., Vladivostok: Dal’nauka, 2008.

  21. 21.

    Frolov, A.V. and Georgievskii, V.Yu., Extreme flood of 2013 in the Amur Basin, in Ekstremal’nye pavodki v basseine r. Amur: prichiny, prognozy, rekomendatsii (Sb. dokladov) (Extreme Floods in Amur R. Basin: Causes, Forecasts, Recommendations (Coll. of Reports), Moscow: Rosgidromet, 2014, pp. 5–39.

    Google Scholar 

  22. 22.

    DIN 38404 C3. German Standard Methods for the Examination of Water, Wastewater and Sludge—Physical and Physical-Chemical Parameters (group C)—Pt. 3: Determination of Absorption in the Range of the Ultraviolet Radiation, Spectral Absorptions Coefficient (C3), Berlin, 2015.

  23. 23.

    Doick, K.J., Klingelmann, E., Burauel, P., Jones, K.C., and Semple, K.T., Long-term fate of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in an agricultural soil, Environ. Sci. Technol., 2005, vol. 39, pp. 3663–3670.

    Article  Google Scholar 

  24. 24.

    Haritash, A.K. and Kaushik, C.P., Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs), J. Hazard. Mater., 2009, vol. 169, nos. 1–3, pp. 1–15.

    Article  Google Scholar 

  25. 25.

    Hashim, M.A., Mukhopadhyay, S., Sahu, J.N., and Sengupta, B., Remediation technologies for heavy metal contaminated groundwater, J. Environ. Manage., 2011, vol. 92, no. 10, pp. 2355–2388.

    Article  Google Scholar 

  26. 26.

    Johnsen, A.R., Wick, L.Y., and Harms, H., Principles of microbial PAH-degradation in soil, Environ. Pollut., 2005, vol. 133, no. 1, pp. 71–84.

    Article  Google Scholar 

  27. 27.

    Kulakov, V.V., Fisher, N.K., Kondratjeva, L.M., and Grischek, T., Riverbank filtration as an alternative to surface water abstraction for safe drinking water supply for the city of Khabarovsk, in Riverbank Filtration for Water Security in Desert Countries, Ray, C. and Shamrukh, M., Eds., Springer: Dordrecht, Netherlands, 2010, pp. 281–298.

    Google Scholar 

  28. 28.

    Lee, Y. and Shin, S., Trend analysis of water pollutant at summer rainfall season, J. Environ. Prot., 2014, no. 5, pp. 223–231.

    Article  Google Scholar 

  29. 29.

    Levy, J., Birck, M.D., Mutitia, S., Kilroy, K.C., Windeler, B., Idris, O., and Allen, L.N., The impact of storm events on a riverbed system and its hydraulic conductivity at a site of induced infiltration, J. Environ. Manage., 2011, vol. 92, no. 8, pp. 1960–1971.

    Article  Google Scholar 

  30. 30.

    Singh, P., Kumar, P., Mehrotra, I., and Grischek, T., Impact of riverbank filtration on treatment of polluted river water, J. Environ. Manage, 2010, vol. 91, no. 5, pp. 1055–1062.

    Article  Google Scholar 

  31. 31.

    Sower, G.J. and Anderson, K.A., Spatial and temporal variation of freely dissolved polycyclic aromatic hydrocarbons in an urban river undergoing superfund remediation, Environ. Sci. Technol., 2008, vol. 42, no. 24, pp. 9065–9071.

    Article  Google Scholar 

  32. 32.

    Tabak, H.H., Lazorchak, J.M., Lei, L., Khodadoust, A.P., Antia, J.E., Bagchi, R., and Suidan, M.T., Studies on bioremediation of polycyclic aromatic hydrocarbon contaminated sediments: bioavailability, biodegradability and toxicity issues, Environ. Toxicol. Chem., 2003, vol. 22, no. 3, pp. 473–482.

    Article  Google Scholar 

  33. 33.

    Thomas, O. and Burgess, C., UV-visible Spectrophotometry of Water and Wastewater, Amsterdam: Elsevier, 2007.

    Google Scholar 

  34. 34.

    Yan, B., Guan, J., Shesterkin, V., and Zhu, H., Variations of dissolved iron in the Amur River during an extreme flood event in 2013, Chinese Geograph. Sci., 2016, vol. 26, no. 5, pp. 679–686.

    Article  Google Scholar 

  35. 35.

    Yang, L., Hur, J., and Lee, S., Dynamics of dissolved organic matter during four storm events in two forest streams: source, export, and implications for harmful disinfection by-product formation, Environ. Sci. Pollut. Res., 2015, vol. 22, pp. 9173–9183.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to D. V. Andreeva.

Additional information

Original Russian Text © L.M. Kondrat’eva, D.V. Andreeva, 2018, published in Vodnye Resursy, 2018, Vol. 45, No. 6, pp. 618–628.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kondrat’eva, L.M., Andreeva, D.V. Effect of a Flood in the Amur River on Organic Matter Dynamics in Groundwater. Water Resour 45, 887–896 (2018). https://doi.org/10.1134/S009780781806009X

Download citation


  • flood
  • riverbank filtration
  • groundwater
  • organic substances