Skip to main content
Log in

Correlating the concentration of mobile manganese with redox- and acid–base properties in sediment column of the Mozhaisk Reservoir in the period of its formation (1970-1975)

  • Water Quality and Protection: Environmental Aspects
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Data of 1970-1971 and 1974-1975 for six layers of the Mozhaisk Reservoir were used to analyze the within-year relationships between Mn concentration and silt Eh and pH. The character of these relationships is explained. For the first time, a critical Eh zone, where Mn concentration abruptly changes, was identified. The redox processes involving Mn were shown to gradually stabilize over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vinogradova, N.N., Suspended matter and bottom sediments, in Kompleksnye issledovaniya vodokhranilishch (Integrated Studies of Reservoirs), iss. 3, Mozhaiskoe vodokhranilishche (Mozhaisk Reservoir), Moscow: Mosk. Gos. Univ., 1979, pp. 231–261.

    Google Scholar 

  2. Garrels, R.M. and Christ, C.L., Solutions, minerals and equilibria New York: Harper and Row, 1965.

    Google Scholar 

  3. Grigor’eva, I.L., Modern hydrochemical assessment of the Ivankovo and Uglich reservoirs, in Tr. Mezhdunar. nauchno-prakt. konf. “Sovr. probl. vodokhr. i ikh vodosbor” (Proc. Int. Sci.-Pract. Conf. “Current Problems of Reservoirs and Their Watershed”), vol. 2, Perm, 2013, pp. 48–53.

    Google Scholar 

  4. Dzyuban, A.N., Destruktsiya organicheskogo veshchestva i tsikl metana v donnykh otlozheniyakh vnutrennikh vodoemov (Organic Matter Destruction and Methane Cycle in Bottom Sediments of Inland Water Bodies), Yaroslavl: Printkhaus, 2010.

    Google Scholar 

  5. Zakhar’evskii, M.S., Accelerated method for determining redox potential of biological systems, Mikrobiologiya, 1940, vol. 9, nos. 9–10, pp. 50–55.

    Google Scholar 

  6. Kuznetsov, S.I. and Romanenko, V.I., Redox potential in surface layers of silt deposits in different types of lakes, Dokl. Akad. Nauk SSSR, 1963, vol. 151, no. 3, pp. 351–355.

    Google Scholar 

  7. Mal’tsman, T.S., Kozlova, E.I., and Shirokova, E.L., Biotic balance of pelagial ecosystem of the Mozhaisk Reservoir, in Protsessy formirovaniya kachestva vody v pit’evykh vodokhranilishchakh (Water Quality Formation Processes in Drinking-Water Reservoirs), Moscow: Izd. Mosk. Gos. Univ., 1979, pp. 66–119.

    Google Scholar 

  8. Martynova, M.V., Azot i fosfor v donnykh otlozheniyakh ozer i vodokhranilishch (Nitrogen and Phosphorus in Bottom Sediments of Lakes and Reservoirs), Moscow: Nauka, 1984.

    Google Scholar 

  9. Martynova, M.V., Donnye otlozheniya kak sostavlyayushchaya limnicheskikh ekosistem (Bottom Sediments as a Component of Limnic Ecosystems), Moscow: Nauka, 2010.

    Google Scholar 

  10. Martynova, M.V., Zhelezo i marganets v presnovodnykh otlozheniyakh (Iron and Manganese in Freshwater Deposits), Moscow, 2014.

    Google Scholar 

  11. Martynova, M.V., Causes of periodic occurrence of high manganese concentrations in Moskva River reservoirs, Water Resour., 2011, vol. 38, no. 5, pp. 682–683.

    Article  Google Scholar 

  12. Modelirovanie rezhima fosfora v dolinnom vodokhranilishche (Modeling Phosphorus Regime in a Valley Reservoir) Edel’shtein, K.K., Ed., Moscow: Izd. Mosk. Gos. Univ., 1995.

  13. Monitoring water bodies by Moskovsko-Okskoe Basin Water Department, Informatsionnyi byulleten' o kachestve vody vodnykh ob”ektov, nakhodyashchikhsya v zone deyatel’nosti Moskovsko-Okskogo BVU v 2008 g (Information Bulletin on Water Quality in Water Bodies in the Operation Zone of the Moskovsko-Okskoe Basin Water Department), Moscow: Mosoblvodkhoz, 2009.

  14. Monitoring i metody kontrolya okruzhayushchei sredy (Monitoring and Methods of Environmental Control), Moscow: MNEPU, 2001.

  15. Nakhshina, E.P., Mikroelementy v vodokhranilishchakh Dnepra (Microelements in Dnieper Resevoirs), Kiev: Nauk. dumka, 1983.

    Google Scholar 

  16. Novikov, B.I., Donnye otlozheniya Dneprovskikh vodokhranilishch (Bottom Sediments of Dnieper Reservoirs), Kiev: Nauk. dumka, 1985.

    Google Scholar 

  17. Romanenko, V.I., Mikrobiologicheskie protsessy produktsii i destruktsii organicheskogo veshchestva vo vnutrennikh vodoemakh (Microbiological Processes of Organic Matter Production and Destruction in Inland Water Bodies), Leningrad: Nauka, 1985.

    Google Scholar 

  18. Romanenko, V.I. and Kuznetsov, S.I., Ekologiya mikroorganizmov presnykh vod: Laboratornoe rukovodstvo (Ecology of Freshwater Microorganisms: Laboratory Guide), Leningrad: Nauka, 1974.

    Google Scholar 

  19. Sokolova, N.Yu., Benthic fauna and its formation in water supply reservoirs for Moscow (the Mozhaisk, Ruza, Ozerna, and Ucha), in Kompl. issl. Vodokhranilishch (Integrated Studies of Reservoirs), iss. 1, Moscow: Izd. Mosk. Gos. Univ., 1971, pp. 163–196.

    Google Scholar 

  20. Strakhov, N.M., Problemy osadochnogo margantsevorudnogo protsessa (Problems of Sedimentary Manganese- Ore-Formation Process), Moscow: Nauka, 1968.

    Google Scholar 

  21. Uroven’ zagryaznennosti rek v raione raspolozheniya ob”ekta po UKhO p. Gornyi Krasnopartizanskogo raiona Saratovskoi oblasti (River Pollution Level in the Zone of Location of the Object of UKhO, Gornyi Settl., Krasnopartizanskii raion, Saratov oblast), Moscow: VERITAS, 2011.

  22. Edel’shtein, K.K., Gidrologiya ozer i vodokhranilishch (Hydrology of Lakes and Reservoirs), Moscow: Pero, 2014.

    Google Scholar 

  23. Cai, W.-J., Luther, III G.W., Cornwell, J.C., and Giblin, A.E., Carbon cycling and coupling between proton and electron transfer reactions in aquatic sediment in lake Champlain, Aquat. Geochem., 2010, vol. 16, pp. 421–446.

    Article  Google Scholar 

  24. De Schamphelaire, L., Rabaey, K., Boeckx, P., Boon, N., and Verstraete, W., Minireview: the potential of enhanced manganese redox cycling for sediment oxidation, Geomicrobiol. J., 2007, vol. 247, no. 8, pp. 547–558.

    Article  Google Scholar 

  25. Gantzer, P.A., Bryant, L.D., and Little, J.C., Controlling soluble iron and manganese in a water-supply reservoir using hypolimnetic oxygenation, Wat. Res., 2009, vol. 43, no. 5, pp. 1285–1294.

    Article  Google Scholar 

  26. Golterman, H.L. and Clumo, R.S., Methods for Chemical Analysis of Fresh Water, Oxford: Blackwell Sci. Publ., 1969.

    Google Scholar 

  27. Schaller, T. and Wehrli, B., Geochemical-focusing of manganese in lake sediments—an indicator of deepwater oxygen conditions, Aquat. Geochem., 1997, vol. 2, no. 4, p. 359–378.

    Article  Google Scholar 

  28. Wehrli, B., Friedl, G., and Manceau, A., Reaction rates and products of manganese oxidation at the sedimentwater interface, Aquatic Chem., 1995, vol. 244, no. 1, pp. 111–134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Martynova.

Additional information

Original Russian Text © M.V. Martynova, 2017, published in Vodnye Resursy, 2017, Vol. 44, No. 5, pp. 573–582.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martynova, M.V. Correlating the concentration of mobile manganese with redox- and acid–base properties in sediment column of the Mozhaisk Reservoir in the period of its formation (1970-1975). Water Resour 44, 758–767 (2017). https://doi.org/10.1134/S009780781704011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S009780781704011X

Keywords

Navigation