Skip to main content
Log in

Assessing the trophic state of water bodies by high-resolution remote spectrometry in visible band

  • Water Quality and Protection: Environmental Aspects
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Analysis is presented of many-year spectrometric data in the visible band of electromagnetic spectrum collected for the Don R., including the Tsimlyansk Reservoir in 2010–2013 with a period of ~15 days. An algorithm has been proposed for separating spectral brightness coefficient of the rising radiation from water into six categories. A nomenclature scale of the trophic status of water bodies has been constructed. The obtained scale coincides with the nomenclature scales constructed by chlorophyll a concentration for water bodies under different physiographic conditions. The unquestioning advantage of remote sensing methods for assessing water body (WB) trophic status is emphasized, i.e., the possibility to carry out real-time studies within minutes at high representativeness of the results with respect to the examined aquatic ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bul’on, V.V., Plankton primary production and classification of lakes, in Produktsionno-gidrobiologicheskie issledovaniya vodnykh ekosistem (Production-Hydrobiological Studies of Aquatic Ecosystems), Leningrad: Nauka, 1987, pp. 45–51.

    Google Scholar 

  2. Vinberg, G.G., Pervichnaya produktsiya vodoemov (Primary Production of Water Bodies), Minsk: Izd. AN BSSR, 1960.

    Google Scholar 

  3. Gitel’son, A.A. and Siladi, F., Radiation model of mesotrophic and eutrophic water bodies, Issled. Zemli Kosmosa, 1988, no. 6, pp. 72–82.

    Google Scholar 

  4. GOST (State Standard) 17.1.4.02-90: Water. Method of Spectrophotometric Determination of Chlorophyll a, 1990.

  5. Datsenko, Yu.S., Evtrofirovanie vodokhranilishch. Gidrologo-gidrokhimicheskie aspekty (Eutrophication of Reservoirs: Hydrological–Hydrochemical Aspects), Moscow: GEOS, 2007.

    Google Scholar 

  6. Erlov, N.G., Optika morya (Sea Optics), Leningrad, 1980.

    Google Scholar 

  7. Zakharenkov, I.S., Plankton chlorophyll content as a biological indicator in lake classification, in Biologiya vnutrennikh vodoemov Pribaltiki (Biology of Inland Water Bodies in the Baltic Region), Leningrad: Nauka, 1962, pp. 13–195.

    Google Scholar 

  8. Kitaev, S.P., Ekologicheskie osnovy bioproduktivnosti ozer raznykh prirodnykh zon (Ecological Principles of Lake Bioproductivity in Different Natural Zones), Moscow: Nauka, 1984.

    Google Scholar 

  9. Kondrat’ev, K.Ya. and Pozdnyakov, D.V., Opticheskie svoistva prirodnykh vod i distantsionnoe zondirovanie fitoplanktona (Optical Properties of Natural Waters and Remote Sounding of Phytoplankton), Leningrad: Nauka, 1988.

    Google Scholar 

  10. Kopelevich, O.V., A model of water optical properties with a small number of parameters, in Optika okeana (Ocean Optics), Moscow: Nauka, 1983, vol. 2, pp. 208–234.

    Google Scholar 

  11. Lebedeva, T.S. and Sytnik, K.M., Pigmenty rastitel’nogo mira (Pigments of Vegetable Kingdom), Kiev: Nauk. dumka, 1986.

    Google Scholar 

  12. Man’kovskii, V.I., Optical classification of waters, in Opticheskie metody izucheniya okeanov i vnutrennikh vodoemov (Optical Methods of Studying Oceans and Inland Water Bodies), Tallinn, 1980, pp. 124–126.

    Google Scholar 

  13. Milius, A.Yu. and Kyvask, V.O., Quantitative characteristics of phytoplankton as trophicity indicators, in Izuchenie i osvoenie vodoemov Pribaltiki i Belorussii (Studying and Developing Water Bodies in the Baltic Region and Belarus), Riga, 1979, pp. 132–134.

    Google Scholar 

  14. Nikanorov, A.M., Trofimchuk, M.M., and Sukhorukov, B.L., Metody eksperimental’noi gidroekologii: monografiya (Methods of Experimental Hydroecology: A Monograph), Rostov-on-Don: NOK, 2012.

    Google Scholar 

  15. Odum, E., Osnovy ekologii (Fundamentals of Ecology), Moscow: Mir, 1975.

    Google Scholar 

  16. Pelevin, V.N., Byalko, A.V., Bekasova, O.D., and Tsvetkova, A.M., Determining chlorophyll concentration by radiation spectrum rising from a sea, in Gidrofizicheskie i opticheskie issledovaniya v Indiiskom okeane (Hydrophysical and Optical Studies in the Indian Ocean), Moscow: Nauka, 1975, pp. 144–148.

    Google Scholar 

  17. Pelevin, V.N. and Rutkovskaya, V.A., Optical classification of oceanic water by the spectral attenuation of solar radiation, Okeanologiya, 1977, vol. 17, no. 1, pp. 50–54.

    Google Scholar 

  18. RD 52.24.729. 2010. Distantsionnaya spektrometricheskaya s”emka vodnykh ob”ektov v vidimom diapazone voln s mostovykh perekhodov (RD 52.24.729. 2010. Remote spectrometric surveying of water bodies in visible wave range from bridges), Rostov-on-Don, 2010.

  19. Rukovodstvo po metodam gidrobiologicheskogo analiza poverkhnostnykh vod i donnykh otlozhenii (Guide on Methods of Hydrobiological Analysis of Surface Waters and Bottom Deposits), Abakumov, V.A., Ed., Leningrad: Gidrometeoizdat, 1983.

  20. Sid’ko, F.Ya., Frank, N.A., Aponasenko, A.D., and Shchur, L.A., Hydrooptic and hydrobiological studies of the central part of Krasnoyarsk HPP Reservoir, Izv. Sib. Otd. Akad. Nauk SSSR, 1976, no. 5, pp. 45–48.

    Google Scholar 

  21. Sirenko, L.A., Sid’ko, F.Ya., Frank, N.A., et al., Information significance of the pattern of phytoplankton chlorophyll distribution, Gidrobiol. Zh., 1986, vol. 22, no. 2, pp. 14–22.

    Google Scholar 

  22. Sukhorukov, B.L., Garbuzov, G.P., and Nikanorov, A.M., Estimating the ecological conditions of water bodies from the spectra of brightness coefficient, Water Resour., 2000, no. 5, pp. 529–537.

    Google Scholar 

  23. Sukhorukov, B.L. and Novikov, I.V., Comparative analysis of two methods for interpretatiing remote spectrometric data on the state of aquatic ecosystems, Opt. Atmos. Okeana, 2001, vol. 4, no. 10, pp. 944–949.

    Google Scholar 

  24. Trifonova, I.S., Assessing the trophic status of water bodies by plankton chlorophyll a content, in Metodicheskie voprosy izucheniya pervichnoi produktsii planktona vnutrennikh vodoemov (Methodological Issues of Studying Primary Production in Inland Water Bodies), St. Petersburg: Gidrometeoizdat, 1993, pp. 158–166.

    Google Scholar 

  25. Shifrin, K.S., Vvedenie v optiku Okeana (Introduction to Ocean Optic), Leningrad: Gidrometeoizdat, 1983.

    Google Scholar 

  26. Bukata, R.P., Jerome, J.H., and Bruton, J.E., Validation of a five-component optical model for estimating chlorophyll-a and suspended mineral concentrations in Lake Ontario, Appl. Opt., 1981, vol. 20, pp. 3472–3474.

    Article  Google Scholar 

  27. Dobson, H.F., A summary and comparison of nutrients and related water quality in lakes Erie, Ontario, Huron, Superior, J. Fish. Res., 1974, vol. 31, pp. 731–738.

    Article  Google Scholar 

  28. Gitelson, A.A., The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration, Int. J. Remonte Sensig, 1992, vol. 13, no. 17, pp. 3367–3373.

    Article  Google Scholar 

  29. Gordon, H.R., Appl. Opt., 1979, vol. 18, no. 8, pp. 1161–1166.

    Article  Google Scholar 

  30. Hackanson, L. and Peters, R.H., Predictive limnology: methods for predictive modeling, Amsterdam: Acad. Publ., 1995.

    Google Scholar 

  31. Henderson-Sellers, B., Method of assessing the trophic state of lakes and reservoirs, Water Sci. Technol, 1984, vol. 16, pp. 653–662.

    Google Scholar 

  32. Felfoldi, L., A biological vizminosite, Vizugyi Hidrobiol., 1974, vol. 3, pp. 1–242.

    Google Scholar 

  33. Forsberg, C. and Ryding, S.O., Eutrophication parameters and trophic state indices in 30 waste-receiving Swedish lakes, Arch. Hydrobiol., 1980, vol. 89, pp. 189–207.

    Google Scholar 

  34. Garbuzov, G.P. and Sukhorukov, B.L., Investigation of ecological state of water bodies according to the remotely sensing optical spectra, in Proc. 1st Int. Airborne Remote Sensing Conf. and Exhib., Strasbourg: France, 1994, vol. 3, pp. 37–45.

    Google Scholar 

  35. Lee, K.K., Eutrophication. Prepared for supplement to the Encyclopedia of Chemical Technology, New York: Wiley, 1970.

    Google Scholar 

  36. Meybeck, M., Chapman, D., and Helmer, R., Global Freshwater Quality. A First Assessment, Oxford, 1989.

    Google Scholar 

  37. Morel, A. and Prieur, L., Analysis of Variation in Ocean Color, Limnol. Oceanogr., 1977, vol. 22, no. 4, pp. 709–722.

    Article  Google Scholar 

  38. OECD (Organization for Economic Cooperation and Development). Eutrophication of Waters: Monitoring, Assessment and Control. OECD Cooperative Programme on Monitoring of Inland Waters (Eutrophication Control), Paris, 1982.

  39. Rast, W. and Lee, G.F., Summary Analysis the North American (U.S. Portion) OECD Eutrophication Project: Nutrient-Loading Lake Response Relationships and Trophic State Indices. Ecological Research Series, EPA 600/3-78-008. US Environ. Protec. Agency. Washington DC, 1978.

    Google Scholar 

  40. Sakamoto, M., Primary production of phytoplankton community in some Japanese lakes and its dependence on lake depth, Arch. Hydrobiol., 1966, vol. 62, pp. 1–28.

    Google Scholar 

  41. Sukhorukov, B.L., Garbuzov, G.P., and Akawiec, A.A., Model calculations of brightness coefficients spectra for the interpretation of the spectrometric data on fresh water quality, Seventh Int. Symp. “Atm. and Ocean Optics.” Proc. SPIE, 2000, vol. 4341, pp. 503–510.

    Google Scholar 

  42. Thienemann, A., Die binnenge wasser nittelewopas eine limnologische einfuhrung, Binnengwasser, 1925, vol. 1, pp. 1–225.

    Google Scholar 

  43. U.S.-EPA-NES. The Relationships of Phosphorus and Nitrogen to Trophic State of Northeast and North-Central Lakes and Reservoirs, NES Working, Paper., Corvallis. Oregon, 1974, no. 23.

  44. Uttomark, P.D. and Wall, J.P., Lakes, EPA-600/3-75-033. US environ. Protec. Agency, Washington DC, 1975.

    Google Scholar 

  45. Vollenveider, R.A., Das nahrstoff belastungs konzeptals grundlage fur den externen eingriff in den eutrophierungs prozesss tenender gewasserund talsperren, Z. Wass. Abwass. Forsch, 1979, vol. 79, pp. 46–56.

    Google Scholar 

  46. Wetzel, R.G., Limnology, Philadelphia, 1975.

    Google Scholar 

  47. Yentsch, C.S., The influence of phytoplankton pigments on the colour of seawaters, Deep-Sea Res., 1960, vol. 7, pp. 1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Sukhorukov.

Additional information

Original Russian Text © B.L. Sukhorukov, G.E. Kovaleva, I.V. Novikov, 2017, published in Vodnye Resursy, 2017, Vol. 44, No. 1, pp. 79–90.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhorukov, B.L., Kovaleva, G.E. & Novikov, I.V. Assessing the trophic state of water bodies by high-resolution remote spectrometry in visible band. Water Resour 44, 117–127 (2017). https://doi.org/10.1134/S0097807817010183

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807817010183

Keywords

Navigation