Skip to main content
Log in

A numerical model of spring thermal bar development and energy exchange between a water body and the atmosphere at night

  • Hydrophysical Processes
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

A mathematical model is used to assess the effect of temperature and relative air humidity on variations of long-wave radiation flux and the fluxes of sensible and latent heat at the water body-atmosphere interface at night in the period of spring thermal bar development. The effect of those fluxes on variations of the heat storage of the water body, the position of the thermal bar, and the velocity of its motion at night is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blokhina, N.S. and Ordanovich, A.E., The impact of hydrometeorological condition on convective vortex structures in an upper water layer, Meteorol. Gidrol., 1992, no. 10, pp. 55–62.

    Google Scholar 

  2. Blokhina, N.S., Ordanovich, A.E., and Savel’eva, O.S., Model of formation and development of spring thermal bar, Water Resour., 2001, vol. 28, no. 2, pp. 201–204. doi:10.1023/A:1010339919712

    Article  Google Scholar 

  3. Blokhina, N.S., Ovchinnikova, A.V., and Ordanovich, A.E., Mathematical modeling of spring thermal bar in a shallow lake, Vestn. Mosk. Univ., Ser. 3: Fiz. Astron., 2002, no. 2, pp. 60–66.

    Google Scholar 

  4. Blokhina, N.S. and Solov’ev, D.A., Effect of wind on the dynamics of thermal bar development during springtime heating of the water body, Vestn. Mosk. Univ., Ser. 3: Fiz. Astron., 2006, no. 3, pp. 59–63.

    Google Scholar 

  5. Blokhina, N.S. and Ordanovich, A.E., Features of energy exchange between the atmosphere and a water body in the period of spring thermal bar development, in Fizicheskie problemy ekologii (ekologicheskaya fizika) (Physical Problems of Ecology (Ecological Physics), Moscow: MAKS PRESS, 2008, issue 15, pp. 9–19.

    Google Scholar 

  6. Blokhina, N.S. and Ordanovich, A.E., The influence of ice cover on a reservoir on the development of a spring thermal bar, Moscow Univ. Phys. Bull., 2012, vol. 67, no. 1, pp. 109–115. doi: 10.3103/S0027134912010031

    Article  Google Scholar 

  7. Blokhina, N.S. and Solov’ev, D.A., Thermodynamic processes in the lakes on the thermal bar development under condition of the Coriolis effect, Moscow Univ. Phys. Bull., 2010, vol. 65, no. 3, pp. 203–208. doi: 10.3103/S0027134910030094

    Article  Google Scholar 

  8. Bocharov, O.B., Vasil’ev, O.F., and Kvon, V.I., Mathematical modeling of the thermobar in deep lake, Dokl. Akad. Nauk, 1996, vol. 349A, no. 6, pp. 1003–1006.

    Google Scholar 

  9. Glukhovskaya, T.B. and Ordanovich, A.E., On turbulent convection in a flat horizontal layer, Izv. Akad. Nauk, Mekh. Zhidk. Gaza, 1993, no. 6, pp. 49–56.

    Google Scholar 

  10. Zilitinkevich, S.S. and Kreiman, K.D., Theoretical and laboratory study of thermal bar, Okeanologiya (Moscow), 1990, vol. 30, no. 5, pp. 750–755.

    Google Scholar 

  11. Kvon, V.I. and Kvon, D.V., Numerical analysis of the mechanism of deep penetration of surface water in lake coastal zone during spring-summer thermal bar, Vych. Tekhnol., 1997, vol. 2, no. 5, pp. 46–56.

    Google Scholar 

  12. Kovalev, V.A. and Ordanovich, A.E., Fiziko-matematicheskaya model’ turbulentnogo gorizontal’nogo stratifitsirovannogo potoka s uchetom kogerentnykh struktur. Ch. 1. Postroenie modeli (Physicomathematical Model of Turbulent Horizontal Stratified Flow with Coherent Structures Taken into Account, Part 1. Model Construction), Moscow: MGU, 1981. Available from VINITI, no. 27–81.

    Google Scholar 

  13. Solov’ev, D.A. and Blokhina, N.S., Laboratory investigation of the influence of wind forcing on the thermal bar’s evolution, Oceanology (Engl. translation), 2010, vol. 50, no. 6, pp. 855–860. doi: 10.1134/S0001437010060044

    Article  Google Scholar 

  14. Rouch, P., Vychislitel’naya gidrodinamika (Computational Hydrodynamics), Moscow: Mir, 1980.

    Google Scholar 

  15. Tikhomirov, A.I., On the thermal bar in Yakimvarskii Bay, Lake Ladoga, Izv. Vses. Geogr. Obshch., 1959, vol. 91, no. 5, pp. 424–438.

    Google Scholar 

  16. Tikhomirov, A.I., Termika krupnykh ozer (Thermal Processes in Large Lakes), Leningrad: Nauka, 1982.

    Google Scholar 

  17. Tsvetova, E.A., Numerical modeling of hydrodynamic processes responsible for pollutant transport in a deep water body, Vych. Tekhnol., 1997, vol. 2, no. 2, pp. 102–108.

    Google Scholar 

  18. Tsydenov, B.O. and Starchenko, A.V., Numerical investigation of the thermal bar dynamics in lake Baikal in a spring-summer warming period, Vestn. TGU. Matem. Mekh., 2011, no. 1 (13), pp. 120–129.

    Google Scholar 

  19. Farrow, D., A numerical model of the hydrodynamics of the thermal bar, J. Fluid Mech., 1995, vol. 303, pp. 279–295.

    Article  Google Scholar 

  20. Malm, J., Thermal bar dynamics-springtime thermo- and hydrodynamics in large temperate lakes, PhD Dissertation. Dept. of Water Resources Eng. Lund Univ. Rep., 1994.

    Google Scholar 

  21. Naumenko, M.A., Some aspects of the thermal regime of large lakes: Lake Ladoga and Lake Onega, Water Poll. Res. J. Canada, 1994, vol. 29, nos. 2/3, pp. 423–439.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Blokhina.

Additional information

Original Russian Text © N.S. Blokhina, 2014, published in Vodnye Resursy, 2014, Vol. 41, No. 4, pp. 355–361.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blokhina, N.S. A numerical model of spring thermal bar development and energy exchange between a water body and the atmosphere at night. Water Resour 41, 379–384 (2014). https://doi.org/10.1134/S0097807814040034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807814040034

Keywords

Navigation