Skip to main content

Advertisement

Log in

Phytoplankton structure and microcystine concentration in the highly eutrophic Nero Lake

  • Water Quality and Protection: Environmental Aspects
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

The results of observations of some abiotic (water transparency, light intensity, depth, biogenic element concentrations) and algological (chlorophyll concentration, phytoplankton abundance and biomass, the concentration of microcystines—toxins of blue-green algae) characteristics of Lake Nero are given for study periods of 1999–2004 and 2005–2007. Variations of these characteristics in the latter period are shown to be significant. The lake phytoplankton is found to pass in a «catastrophic” manner to monodomination of planktotrichaetic complex of blue-green algae. High-performance liquid chromatography was used for the first time to determine the concentration of microcystines MC-LR and MC-RR in Lake Nero seston. The presence of these types of microcystines in samples was confirmed by mass-spectrometry. A statistically significant correlation was found to exist between the total concentrations of microcystines and the biomass of species of Microcystis genus, suggesting the possible toxicity of representatives of this type of algae in Lake Nero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babanazarova, O.V., Phytoplankton Structure and Concentration Dynamics of Biogenic Substances in Lake Nero, Biologiya Vnutrennikh Vod, 2003, no. 1, pp. 33–39.

  2. Bikbulatov, E.S., Bikbulatova, E.M., Litvinov, A.S., and Poddubnyi, S.A., Gidrologiya I Gidrokhimiya Ozera Nero (Hydrology and Hydrochemistry of Lake Nero), Rybinsk: Rybinskii Dom Pechati, 2003.

    Google Scholar 

  3. Gunova, V.S. and Leflat, O.N., Quaternary Deposits and Paleogeography of Lake Nero, Ekologicheskie problemy ozera Nero i gorodskikh vodnykh ob”ektov (Ecological Problems of Lake Nero and Urban Water Bodies), Rostov Velikii, 2002, pp. 17–30.

  4. Kuz’min, G.V., Phytoplankton: Species Composition and Abundance, in Metodika izucheniya biogeotsenozov vnutrennikh vodoemov (Methods for Studying Biogeocenoses of Inland Water Bodies), Moscow: Nauka, 1975, pp. 73–87.

    Google Scholar 

  5. Lakin, G.F., Biometriya (Biometrics), Moscow: Vysshaya Shkola, 1990.

    Google Scholar 

  6. Lyashenko, O.A., Phytoplankton of Lake Nero, in Sovremennoe Sostoyanie Ekosistemy Ozera Nero (Current State of Lake Nero Ecosystem), Rybinsk: IBVV RAN, 1991.

    Google Scholar 

  7. Prokhorova, I.M., Fomicheva, A.N., Kovaleva, M.I., and Babanazarova, O.V., Spatial and Temporal Dynamics of Mutagenic Activity of Lake Nero Water, Biologiya Vnutrennikh Vod, 2008, App. 2, pp. 17–25.

  8. Sidelev, S.I. and Babanazarova, O.V., Analysis of Relationships between Pigment and Structural Characteristics of Phytoplankton in a Highly Eutrophic Lake, Zhurn. Sibirskogo Federal’nogo Univ. Biologiya, 2008, no. 2, pp. 153–168.

  9. Sidelev, S.I. and Babanazarova, O.V., Phytoplankton Structure in the Highly Eutrophic Lake Nero, Izv. Orenburgskogo Gos. Agrarnogo Univ., 2008, no. 4, pp. 187–190.

  10. Sigareva, L.E., Primary Phytoplankton Production of Lake Nero, Sovremennoe Sostoyanie Ekosistemy Oz. Nero (Current State of Lake Nero Ecosystem), Rybinsk: IBVV RAN, 1991, pp. 53–61.

    Google Scholar 

  11. Sigareva, L.E., Spectrophotometric Method for Studying Phytoplankton Pigments in a Mixed Extract, in Metodicheskie voprosy izucheniya pervichnoi produktsii planktona vnutrennikh vodoemov (Methodological Aspects of Studying Phytoplankton Primary Production in Inland Water Bodies), St. Petersburg: Gidrometeoizdat, 1993, p. 75–85.

    Google Scholar 

  12. Sigareva, L.E. and Lyashenko, O.A., Pigment Characteristics of Lake Nero Phytoplankton, Sovremennoe Sostoyanie Ekosistemy Oz. Nero (Current State of Lake Nero Ecosystem), Rybinsk: IBVV RAN, 1991, pp. 32–53.

    Google Scholar 

  13. Sigareva, L.E., Sidelev, S.I., and Babanazarova, O.V., Plant Pigments in Water Mass, in Sostoyanie ekosistemy ozera Nero v nachale XXI veka (The State of Lake Nero Ecosystem in the Early 21st Century), Moscow: Nauka, 2008, pp. 118–130.

    Google Scholar 

  14. Sostoyanie ekosistemy ozera Nero v nachale XXI veka (The State of Lake Nero Ecosystem in the Early 21st Century), Moscow: Nauka, 2008.

  15. Stroganov, N.S,. and Buzinova, N.S., Prakticheskoe rukovodstvo po gidrokhimii (Practical Guide in Hydrochemistry), Moscow: Mosk. Gos. Univ., 1980.

    Google Scholar 

  16. Trifonova, I.S., Ekologiya i suktsessiya ozernogo fitoplanktona (Ecology and Succession of Lake Phytoplankton), Leningrad: Nauka, 1990.

    Google Scholar 

  17. Anagnostidis, K., and Komarek, J., Modern Approach to the Classification System of Cyanophytes. 3. Oscillatoriales, Arch. Hydrobiol., 1988, Suppl. 80. no. 1–4, pp. 327–472.

    Google Scholar 

  18. Babanazarova, O.V. and Lyashenko, O.A., Inferring Long-Term Changes in the Physical-Chemical Environment of the Shallow, Enriched Lake Nero from Statistical and Functional Analyses of Its Phytoplankton, J. Plankton Res., 2007, vol. 29, no. 9, pp. 747–756.

    Article  Google Scholar 

  19. Carmichael, W.W., Beasly, V., Bunner, D.L., et al., Naming Cyclic Heptapeptide Toxins of Cyanobacteria (Blue-Green Algae), Toxicon, 1988, vol. 26, pp. 971–973.

    Article  Google Scholar 

  20. Fastner, J., Erhard, M., Carmichael, W.W., et al., Characterization and Diversity of Microcystins in Natural Blooms and Strains of the Genera Microcystis and Planktothrix from German Freshwaters, Arch. Hydrobiol., 1999, vol. 145, pp. 147–163.

    Google Scholar 

  21. Hillebrand, H., Durselen, C-D., Kirschtel, D., et al., Biovolume Calculation for Pelagic and Benthic Microalgae, J. Phycol, 1999, vol. 35, pp. 403–424.

    Article  Google Scholar 

  22. Jeffrey, S.W. and Humphrey, G.F., New Spectrophotometric Equations for Determining Chlorophylls A, B, C1, and C2 in Higher Plants Algae and Natural Phytoplankton, Biochem. Phys. Pflanz, 1975, vol. 167, pp. 191–194.

    Google Scholar 

  23. Kuiper-Goodman, T., Falconer, I., and Fitzgerald, J., Human Health Aspects, Toxic Cyanobacteria in Water. A Guide to Their Public Health Consequences, Monitoring and Management, London, 1999, pp. 113–153.

  24. Kurmayer, R., Christiansen, G., and Chorus, I., The Abundance of Microcystin-Producing Genotypes Correlates Positively with Colony Size in Microcystis and Determines Its Microcystins Net Production in Lake Wannsee, Applied Environ. Microbiology, 2003, vol. 69, no. 2, pp. 787–795.

    Article  Google Scholar 

  25. Kurmayer, R., Christiansen, G., Fastner, J., and Borner, T., Abundance of Active and Inactive Microcystin Genotypes in Populations of the Toxic Cyanobacterium Planktothrix Spp, Environ. Microbiology, 2004, vol. 6, no. 8, pp. 831–841.

    Article  Google Scholar 

  26. Kurmayer, R., Dittmann, E., Fastner, J., and Chorus, I., Diversity of Microcystin Genes within a Population of the Toxic Cyanobacterium Microcystis Spp. in Lake Wannsee (Berlin, Germany), Microbiol. Ecol., 2002, vol. 43, pp. 107–118.

    Article  Google Scholar 

  27. Lawton, L.A., Edwards, C., and Codd, G.A., Extraction and High-Performance Liquid Chromatographic Method for the Determination of Microcystins in Raw and Treated Waters, Analyst, 1994, vol. 119, pp. 1525–1530.

    Article  Google Scholar 

  28. Mur, L.R., Schreus, H., and Visser, P., How to Control Undesirable Cyanobacteria Dominance, Proc. the Fifth Intern. Conf. on the Conservation and Management of Lakes. Stresa, 1993, pp. 565–569.

  29. Reynolds, C.S., The Ecology of Freshwater Phytoplankton, Cambridge: Cambridge University Press, 1984.

    Google Scholar 

  30. Reynolds, C.S., Huszar, V., Kruk, C., et al., Towards a Functional Classification of the Freshwater Phytoplankton, J. Plankton Res., 2002, vol. 24, no. 5, pp. 417–428.

    Article  Google Scholar 

  31. Scheffer, M., Rinaldi, S., Gragnani, A., et al., On the Dominance of Filamentous Cyanobacteria in Shallow, Turbid Lakes, Ecology, 1997, vol. 78, no. 1, pp. 272–282.

    Article  Google Scholar 

  32. SCOR-UNESCO Working Group no. 17. Determination of Photosynthetic Pigments in Sea Water, Monographs on Oceanographic Methodology, Paris: UNESCO, 1966, pp. 9–18.

    Google Scholar 

  33. Suda, S., Watanabe, M., Otsuka, S., et al., Taxonomic Revision of Water-Bloom-Forming Species of Oscillatorioid Cyanobacteria, Intern. J. Systematic Evolutionary Microbiology, 2002, vol. 52, pp. 1577–1959.

    Article  Google Scholar 

  34. Toha, J., Soto, A., and Contreras, S., Catastrophe Theory and Logistic Growth Equation, Stud. Biophys., 1981, no. 83, pp. 53–55.

  35. World Health Organization: Guidelines for Drinking-Water Quality. Health Criteria and Other Supporting Information, Genewa: World Health Organization, 1998.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.V. Babanazarova, R. Kurmayer, S.I. Sidelev, E.M. Aleksandrina, E.G. Sakharova, 2011, published in Vodnye Resursy, 2011, Vol. 38, No. 2, pp. 223–231.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babanazarova, O.V., Kurmayer, R., Sidelev, S.I. et al. Phytoplankton structure and microcystine concentration in the highly eutrophic Nero Lake. Water Resour 38, 229–236 (2011). https://doi.org/10.1134/S0097807811020023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807811020023

Keywords