Skip to main content
Log in

Zonal features of lake acidification

  • Water Quality and Protection: Environmental Aspects
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Zonal features of water acidification in small lakes of European Russia are analyzed. The conditions under which the process can develop are evaluated. Studies of water chemistry variations and formulation of various criteria used to assess water acidification made it possible to prove the development of the process in the humid part of the area under study, i.e., in tundra, taiga, and forest regions. The leading natural and anthropogenic factors, whose combination governs the acidification mechanism and secondary effects are discussed. The concentrations of some metals (Al, Zn, Pb, and others) are proved to increase in waters with low pH, as well as at an increase in water color index. Critical loads of acid precipitation are evaluated and the values of their exceedance in lakes in different natural-climatic zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Voitkevich, G.V., Kokin, A.V., Miroshnikov, A.E., and Prokhorov, V.G., Spravochnik po geokhimii (Handbook of Geochemistry), Moscow: Nedra, 1990.

    Google Scholar 

  2. Geologicheskii slovar’ (Geological Dictionary), Moscow: Nedra, 1978, vol. 1.

  3. Komov, V.T. and Lazareva, V.I., The Causes and Consequences of Anthropogenic Acidification of Surface Water in Northern Region: A Comparative Limnological Study of Lakes in Darwin Reserve, in Struktura i funktsionirovanie ekosistem atsidnykh ozer (The Structure and Functioning of Acid Lake Ecosystems), St. Petersburg: Nauka, 1994, pp. 3–30.

    Google Scholar 

  4. Komov, V.T., Lazareva, V.I., and Stepanova, I.K., Anthropogenic Pollution of Small Lakes in Northern European Russia, Biologiya Vnutrennikh Vod, 1997, no. 3, pp. 5–17.

  5. Linnik, P.A., Comparative Evaluation of the Role of Various Factors in Metal Migration from Bottom Sediments in Experimental Modeling, Sovremennye Fundamental’nye Problemy Gidrokhimii i Monitoringa Kachestva Poverkhnostnykh Vod Rossii. Mater. Nauch.-Prakt. Konf. Rostov-na-Donu (Current Basic Problems in Hydrochemistry and Monitoring Surface Water Quality in Russia. Proc. Sci.-Pract. Conf.), Rostov-on-Don, 2009, pp. 116–119.

  6. Lozovik, P.A., Tolerance of Water Objects to Acidification Depending on Their Specific Drainage Areas—a Case Study of Lakes and Rivers in the Basin of the Shuya River (Onezhskaya), Vodn. Resur., 2006, vol. 33, no. 2, pp. 188–194 [Water Resour. (Engl. Transl.), vol. 33, no. 2, pp. 170–175].

    Google Scholar 

  7. Lozovik, P.A., Markkanen, S.-L, Morozov, A.K, et al., Poverkhnostnye vody Kaleval’skogo raiona i territorii Kostomushi v usloviyakh antropogennogo vozdeistviya (Surface Waters of Kalevala District and Kostomuksha Territory under Anthropogenic Impact), Petrozavodsk: Izd. KarNTs RAN, 2001.

    Google Scholar 

  8. Lukina, N.V. and Nikonov, V.V., Biogeokhimicheskie tsikly v lesakh Severa v usloviyakh aerotekhnogennogo zagryazneniya (Biogeochemical Cycles in Northern Forests under Anthropogenic Pollution), Apatity: KNTs RAN, 1996, vol. 1, vol. 2.

    Google Scholar 

  9. Moiseenko, T.I., Zakislenie vod: faktory, mekhanizmy i ekologicheskie posledstviya (Water Acidificatioin: Factors, Mechanisms, and Environmental Consequences), Moscow: Nauka, 2003.

    Google Scholar 

  10. Moiseenko, T.I., Acidification and Related Behavior of Chemical Elements in Water, Geokhimiya, 2005, no. 10, pp. 1120–1127 [Geochem. Int. (Engl. Transl.), no. 10, pp. 1028–1035].

  11. Moiseenko, T.I. and Gashkina, N.A., The Distribution of Trace Elements in Surface Continental Waters and the Character of Their Migration in Water, Vodn. Resur., 2007, vol. 34, no. 4, pp. 454–468 [Water Resour. (Engl. Transl.), vol. 34, no. 4, pp. 423–437].

    Google Scholar 

  12. Moiseenko, T.I., Gashkina, N.A., Kudryavtseva, L.P., et al., Zonal Features of the Formation of Water Chemistry in Small Lakes in European Russia, Vodn. Resur., 2006, vol. 33, no. 2, pp. 163–180 [Water Resour. (Engl. Transl.), vol. 33, no. 2, pp. 144–162].

    Google Scholar 

  13. Chernogaeva, G.M., Zelenova, M.G., and Artemov, I.E., Effect of Polluted Atmospheric Precipitation on the Salinity and Acidification of Surface Fresh Waters, Sovremennye Fundamental’nye Problemy Gidrokhimii i Monitoringa Kachestva Poverkhnostnykh Vod Rossii. Mater. Nauch.-Prakt. Konf. Rostov-na-Donu (Current Basic Problems in Hydrochemistry and Monitoring Surface Water Quality in Russia. Proc. Sci.-Pract. Conf.), Rostov-on-Don, 2009, pp. 240–243.

  14. Aber, J.D., Nadelhoffer, K.J., Steudler, P., and Melillo, J.M., Nitrogen Saturation in Northen Forest Ecosystems—Hypothesis and Implications, BioScience, 1989, vol. 39, pp. 378–386.

    Article  Google Scholar 

  15. Brakke, D.F., Henriksen, A., and Norton, A.S., The Relative Importance of Acidity Sources for Humic Lakes in Norway, Nature, 1987, vol. 329, no. 6138, pp. 432–434.

    Article  Google Scholar 

  16. Brakke, D.F., and Landers, D.H., Chemical and Physical Characteristics of Lakes in the Northeastern United States, Environ. Sci. Technol., 1988, vol. 222, pp. 155–163.

    Article  Google Scholar 

  17. Calculation and Mapping of Critical Thresholds in Europe. CCE Stattus Report 1999. Bilthoven: National Institute of Public Health ana the Environment. 1999. Rep.259101009. ISBN 90-6960-083-8.

  18. Canadian Acid Rain Assessment, Jeffries D.S., Ed., Toronto: Minister of Canada Environ, 1997.

    Google Scholar 

  19. Lee, D.S., Atmospheric Deposition of Sulphur and Nitrogen Species in United Kingdom, Freshwater Biology, 1996, vol. 36, pp. 151–167.

    Article  Google Scholar 

  20. Dillon, P.J., and Molot, L.A., Annual Retention of Ammonium and Nitrate and Short-Term Ionic Composition of Stream Water during Snowmelt in Lakes and Forested Catchments in Ontario, Toronto: Queen’s Printer for Ontario. ISBN 0-7729-5210-8, 1989.

    Google Scholar 

  21. EMEP/MSC-W 2000 Performance of EMEP Eulerian Acid Deposition Model for 1998, Olendrzynski, K., Ed., Oslo: The Norwegian Meteorological Institute, 2000, EMEP Rep. 3/2000.

    Google Scholar 

  22. Galloway, J.N., Acid Deposition: Perspectives in Time and Space, Water, Air and Soil Pollut., 1995, vol. 85, no. 1, pp. 15–24.

    Article  Google Scholar 

  23. Graedel, T.E., Benkovitz, C.M., Keene, W.C., et al., Global Emission Inventories of Acid-Related Compounds, Water, Air Soil Pollut., 1995, vol. 85, no. 1, pp. 25–36.

    Article  Google Scholar 

  24. Henriksen, A., Porsch, M., Hulberg, H., and Lien, L., Critical Loads of Acidity for Surface Waters—Can the ANClimit Be Considered Variable?, Water, Air Soil Pollut., 1995, vol. 85, no. 4, pp. 2419–2424.

    Article  Google Scholar 

  25. Henriksen, A., Skjelvle, B.L., Moiseenko, T., et al., Northern European Lake Survey, 1995. Finland, Norway, Sweden, Denmark, Russian Kola, Russian Karelia, Scotland and Wales, AMBIO, 1998, vol. 27, no. 2, pp. 80–91.

    Google Scholar 

  26. Hettelingh, J.P., Posch, M., de Smet, P.A.M., and Downing, R.J., The Use of Critical Loads in Emission Reduction Agreements in Europe, Water, Air Soil Pollut., 1995, vol. 85, no. 4, pp. 2381–2388.

    Article  Google Scholar 

  27. Hormung, M., Le-Grice, S., Brown, N., and Norris, D., The Role of Geology and Soils in Controlling Surface Water Acidity in Wales, in Acid Waters in Wales, Edwards, R.W., Gee, A.S., and Stoner, J.S., Eds., Dordrecht: Kluwer, 1990, pp. 55–66.

    Google Scholar 

  28. Hovind, H., Intercomparison 0115. International Co-Operative Programme on Assessment and Monitoring of Acidification of Rivers and Lakes, Oslo: Norwegian Institute for Water Research, 2001.

    Google Scholar 

  29. Jeffrey, S.K., Norton, S.A., Haines, T.A., et al., Mechanisms of Episodic Acidification in Low-Order Streams in Maine, USA, Environ. Pollut., 1992, vol. 78, pp. 37–44.

    Article  Google Scholar 

  30. Johansson, K., Bringmark, E., Lindevall, L., and Wilanders, A., Effects of Acidification on the Concentration Metals in Running Water in Sweden, Water, Air Soil Pollut., 1995, vol. 85, no. 3, pp. 779–784.

    Article  Google Scholar 

  31. Karlsson, R. and Ljungstrm, E., Nitrogen Dioxide and Sea Salt—a Laboratory Study, J. of Aerosol Science, 1995, vol. 26, pp. 39–50.

    Article  Google Scholar 

  32. Kramer, J.R., Cronan, C.S., DePinto, J.V., et al., Organic Acids and Acidification of Surface Waters, New York: Acidic Deposition Committee. Utility Air Regulatory Group, 1989.

    Google Scholar 

  33. Kuylenstierna, J.C.I., Cambrige, H., Cinderby, S., and Chadwick, M.J., Terrestrial Ecosystems Sensitivity to Acidic Deposition in Developing Countries, Water, Air Soil Pollut., 1995, vol. 85, no. 2, pp. 2319–2324.

    Article  Google Scholar 

  34. Kuylenstierna, J.C.I., Rodhe, M., Cinderby, S., and Hicks, K., Acidification in Developing Countries: Ecosystem Sensitivity and the Critical Load Approach on a Global Scale, AMBIO, 2001, vol. 30, no. 1, pp. 20–28.

    Google Scholar 

  35. Lightowlers, P.J. and Cape, J.N., Sources and Fate of Atmospheric HCl in the UK and Western Europe, Atmos. Environ., 1988, vol. 22, pp. 7–15.

    Article  Google Scholar 

  36. Mannio, J., Responses of Headwater Lakes to Air Pollution Changes in Finland, Helsinki: Academic dissertation. University of Helsinki, 2001.

    Google Scholar 

  37. Moiseenko, T.I., Acidification and Critical Loads in Surface Waters: Kola, Northern Russia, AMBIO, 1994, vol. 23, no. 3, pp. 418–424.

    Google Scholar 

  38. Moiseenko, T.I., Critical Load of SO4 for surface waters in the Kola region of Russia, Water, Air, Soil Pollut., 1996, vol. 2, no. 6138, pp. 469–473.

    Google Scholar 

  39. Moiseenko, T.I., The Fate of Metals in Arctic Surface Waters. Method for Defining Critical Levels, Science Tot. Environ., 1999, vol. 236, pp. 19–39.

    Article  Google Scholar 

  40. Mosello, R., Bianchi, M., and Brizzo, M.C., AQUACON-MedBas “Acid Rain Analysis”, Milan: Ispra, 1998.

    Google Scholar 

  41. Nelson, W.O., and Campbell, P.G.C., The Effects of Acidification on the Geochemistry of Al, Cd, Pb, and Hg in Freshwater Environments: A Literature Review., Environ. Pollut., 1991, vol. 71, pp. 91–130.

    Article  Google Scholar 

  42. Nenonen, M., Report on Acidification in the Arctic Countries: Man-Made Acidification in a World of Natural Extrems. Rovaniemi: The State of the Arctic Environment., 1991.

  43. Reuss, J.O., Cosby, B.J., and Wright, R.F., Chemical Processes Governing Soil and Water Acidification, Nature, 1987, vol. 329, no. 6138, pp. 28–32.

    Google Scholar 

  44. Rodhe, H., Landgner, J., and Gallardo, L., Kjellstrom, Global Scale Transport of Acidifying Pollution, Water, Air Soil Pollut., 1995, vol. 85, pp. 37–50.

    Article  Google Scholar 

  45. Skjelkvåle, B.L., Andersen, T., Fjeld, E., et al., Heavy Metal Surveys in Nordic Lakes: Concentrations, Geographic Patterns and Relation to Critical Limits, AMBIO, 2001, vol. 30, no. 1, pp. 2–10.

    Google Scholar 

  46. Standart Methods for the Examination of Water and Wasterwater (A.P.H.A., A.W.W.A., W.E.F.), Washington, DC: American Public Health Association, 1992.

  47. Stoddard, J.L., Traaen, T.S., and Skjelkvale, B.L., Assessment of Nitrogen Leacheng et JCP-Waters Sites (Europe and North America), Water, Air Soil Pollut., 2001, vol. 130, pp. 781–786.

    Article  Google Scholar 

  48. Sullivan, T.J., Aquatic Effect of Acid Deposition, Boca Buton: Levis, 2001.

    Google Scholar 

  49. Sutton, M.A., Place, C.J., Eager, M., et al., Assessment of the Magnitude of Ammonia Emission in the United Kingdom, Atmospheric Environ., 1995, vol. 29, pp. 1393–1412.

    Article  Google Scholar 

  50. Trends in Surface Water Chemistry and Biota: The Important of Confounding Factors, B.-L. Skjelkvåle, Ed., Oslo: NIVA, 2006.

    Google Scholar 

  51. Tuovinen, J.P., Laurila, H., Lattila, A., et al., Impact of Sulphur Dioxide Sources in the Kola Peninsula on Air Quality in Northermost Europe, Atmospheric Environ., 1993, vol. 27, pp. 1379–1395.

    Google Scholar 

  52. Wigington, P.J., Davices, T.O., Tranter, M., Eshleman, K.N., Comparison of Episodic Acidification in Canada, Europe, and the United States, Environ. Pollut., 1992, vol. 78, pp. 29–35.

    Article  Google Scholar 

  53. Wright, R.F., Norton, S.A., Brakke, D.F., and Frogner, T., Experimental Verification of Episodic Acidification of Freshwaters by Sea Salts, Nature, 1988, vol. 334, no. 6158, pp. 422–424.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © T.I. Moiseenko, N A. Gashkina, 2011, published in Vodnye Resursy, 2011, Vol. 38, No. 1, pp. 39–55.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moiseenko, T.I., Gashkina, N.A. Zonal features of lake acidification. Water Resour 38, 47–62 (2011). https://doi.org/10.1134/S0097807811010076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807811010076

Keywords