Skip to main content

Advertisement

Log in

Relationships between groundwater in permafrost zone and climate changes

  • Water Resources and the Regime of Water Bodies
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

The paper presents the results of statistical analysis and estimation of long-term changes in surface air temperature, the gas composition of the atmosphere, the depth of seasonal thawing, and the temperature and area of permafrost occurrence in the circumpolar zone of the Northern Hemisphere. Preliminary estimates were obtained for the possible influence of the current changes in the thermophysical parameters of permafrost rocks on the albedo of the underlying surface, air moisture content, and the concentrations of carbon dioxide and methane in the atmosphere. The density of anthropogenic and natural methane fluxes from the underlying surface to the atmosphere is evaluated. The possible formation mechanisms of global maximums in carbon dioxide and methane concentration in the atmosphere of circumpolar areas in the context of interaction between methane cycle and the processes of permafrost thawing are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Anisimov, O.A., Estimating Macroclimate of Permafrost Zone in Eurasia and Permafrost Occurrence under Global Climate Warming, Meteorol. Gidrol., 1994, no. 9, pp. 12–19.

  2. Anisimov, O.A., and Nel’son, F.E., On the Application of Mathematical Models to Studying Climate-Permafrost Relationship, Meteorol. Gidrol., 1990, no. 10, pp. 13–20.

  3. Anisimov, O.A., and Nel’son, F.E., Effect of Climate Change on Permafrost in the Northern Hemisphere, Meteorol. Gidrol., 1997, no. 5, pp. 71–80.

  4. Anisimov, O.A., and Skvortsov, M.Yu., On the Application of Mathematical Models to Studying the Effect of Climate Changes on Permafrost, Meteorol. Gidrol., 1989, no. 9, pp. 98–103.

  5. Velichko, A.A., and Nechaev, V.P., On the Assessment of Permafrost Zone Dynamics in Northern Eurasia under Global Climate Changes, Dokl. Akad. Nauk, 1992, vol. 324, no. 3, pp. 667–671.

    Google Scholar 

  6. Dzyuba, A.V., Formalization of Long-Range Correlation between North-Atlantic Oscillation and the Temperature Regime of Atlantic-Eurasian Circumpolar Zone, Meteorol. Gidrol., 2009, no. 5, pp. 16–33.

  7. Demchenko, P.F., Velichko, A.A., Golitsyn, G.S., et al., The Fate of Permafrost: Looking form the Past into the Future, Priroda (Moscow, Russ. Fed.), 2001, no. 11, pp. 43–49.

  8. Eliseev, A.V., Mokhov, I.I., Arzhanov, M.M., et al., Interaction between Methane Cycle and Processes in Wetland Ecosystems in a Climate Model with Intermediate Complexity, Izv. Akad. Nauk, Fiz. Atmos. Okeana, 2008, vol. 44, no. 2, pp. 147–162.

    Google Scholar 

  9. Zektser, I.S., Podzemnye vody kak komponent okruzhayushchei sredy (Groundwater as an Environmental Component), Moscow: Nauch. mir, 2001.

    Google Scholar 

  10. Kondrat’ev, K.Ya., and Krapivin, V.F., Modelirovanie global’nogo krugovorota ugleroda (Modeling Global Carbon Cycle), Moscow: Fizmatlit, 2004.

    Google Scholar 

  11. Kuz’mina, S.I., Iokhannessen, O.M., Aniskina, O.G., and Bobylev, L.P., Data on Surface Air Temperature in High Northern Latitudes: Creation of a New Grid Data Set on Surface Air Temperature in High Northern Latitudes, Probl. Arkt. Antarkt., 2008, no. 1, pp. 95–102.

  12. Meleshko, V.P., Golitsyn, G.S., Govorkova, V.A., et al., Possible Anthropogenic Climate Changes in Russia in the XXI Century: Estimates by an Ensemble of Climate Models, Meteorol. Gidrol., 2004, no. 4, pp. 38–49.

  13. Mokhov, I.I., Demchenko, P.F., Eliseev, A.V., et al., Estimating Global and Regional Climate Changes in the XX-XXI Centuries with the Use of IAP RAN Model Taking into Account Anthropogenic Impact, Izv. Akad. Nauk, Fiz. Atmos. Okeana, 2002, vol. 38, no. 5, pp. 629–642.

    Google Scholar 

  14. Mokhov, I.I., Eliseev, A.V., and Denisov, S.N., Model Diagnostics of Variations in Methane Emissions by Wetlands in the Second Half of the 20th Century Based on Reanalysis Data, Dokl. Akad. Nauk, 2007, vol. 417, no. 2, pp. 258–262 [Dokl. (Engl. Transl.), vol. 417, no. 2, pp. 1293–1297].

    Google Scholar 

  15. Naidenov, V.I., and Shveikina, V.I., Hydrological Theory of Global Warming of Earth Climate, Meteorol. Gidrol., 2005, no. 12, pp. 63–76.

  16. Nechaev, V.P., Some Relationships between Permafrost and Climate Characteristics and Their Paleogeographic Significance Voprosy paleogeografii pleistotsena lednikovykh i periglyatsionnykh oblastei (Issues of Pleistocene Paleogeography of Glacial and Periglacial Areas), Velichko, A.A. and Grichuk, V.P., Eds., Moscow, 1981.

  17. Pavlov, A.V., Permafrost-Climatic Monitoring in Russia: Methodology, Observation Results, Prediction, Kriosfera Zemli, 1997, vol. 1, no. 1, pp. 47–58.

    Google Scholar 

  18. Pavlov, A.V., Regularities in Permafrost Formation under Current Climate Changes, Izv. Akad. Nauk, Ser. Geogr., 1997, no. 4, pp. 61–73.

  19. Pavlov, A.V., Estimating the Errors in Soil Temperature Measurements in Shallow Wells in a Continuous-Permafrost Zone, Kriosfera Zemli, 2006, vol. 10, no. 4, pp. 9–13.

    Google Scholar 

  20. Semenov, S.M., Izrael’, Yu.A., Gruza, G.V., and Ran’kova, E.Ya., Global and Regional Climate Consequences of Some Programs for Stabilization of Concentrations of Carbon Dioxide and Methane, in Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem (Issues of Environmental Monitoring and Modeling of Ecosystems), St. Petersburg: Gidrometeoizdat, vol. 21, pp. 75–91.

  21. Semiletov, I.P., Formation of Planetary Maxima of CH4 and CO2 in the Atmosphere: The Role of Arctic Aquatic and Terrestrial Ecosystems, Dokl. Akad. Nauk, 1996, vol. 348, no. 6, pp. 817–820 [Dokl. (Engl. Transl.), vol. 348, no. 6, pp. 835–838].

    Google Scholar 

  22. Semiletov, I.P., Greenhouse Effect, Carbon Cycle in the Arctic Region, Russian Transarctic Expedition2000, Vestn. RFFI, 2001, no. 2, pp. 59–63.

  23. Semiletov, I.P., Zimov, S.A., Voropaev, Yu.V., et al., Atmospheric Methane in the Past and Future, Dokl. Akad. Nauk, 1994, vol. 339, no. 2, pp. 253–256.

    Google Scholar 

  24. Chudinova, S.M., Bykhovets, S.S., Sorokovikov, V.A., et al., Variations in Soil Temperature in Russia during the Most Recent Climate Warming, 2003, vol. 7, no. 3, pp. 23–30.

    Google Scholar 

  25. Brown, J., Hinkel, K.M., and Nelson, F.E., The Circumpolar Active Layer Monitoring (CALM) Program: Research Designs and Initial Results, Polar Geography, 2000, no. 3, pp. 165–258.

  26. Canadel, I.J., Dickenson, R., Hibbard, K., et al., Global Carbon Project: Report no. 1, Canberra: Earth System Science Partnership, 2003.

    Google Scholar 

  27. Christensen, T.R., Prentice, I.C., Kaplan, J., et al., Methane Flux from Northern Wetlands and Tundra, Tellus, 1996, vol. 48, no. 5, pp. 409–416.

    Google Scholar 

  28. Dlugokencky, L.G., Masarie, K.A., Lang, P.M., et al., Continuing Decline in the Growth Rate of the Atmospheric Methane Burden, Nature, 1998, vol. 393, no. 6684, pp. 447–450.

    Article  Google Scholar 

  29. Frauenfeld, O.W., Zhang, T., Barry, R.G., et al., 2004: Interdecadal Changes in Seasonal Freeze and Thaw Depths in Russia, J. Geophys. Res., 2004, vol. 109, no. D5101.

  30. Global Atmospheric-Biospheric Chemistry, Prinn, R.G., Ed., New York; London: Plenum Press, 1994.

    Google Scholar 

  31. IGAC. Project N 32, Stockholm, 1994.

  32. IPCC. Technical Summary, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon, S., Qin, D.M., Manning, Z., et al., Cambridge, N.Y: Cambridge Univer. Press, 2007.

    Google Scholar 

  33. Jones, P.D., and Moberg, A., Hemisphere and Large-Scale Surface Air Temperature Variations: An Extensive Revision and An Update to 2001, J. Clim., 2003, no. 16, pp. 206–223.

  34. Majorovicz, J., Safanda, J., and Skinner, W., East To West Retardation in the Onset of the Recent Warming across Canada Inferred from Inversions of Temperature Logs, J. Geophys. Res., 2002. vol. 107, no. 1310, pp. ETG 6/11–ETG 6/12.

    Google Scholar 

  35. Nelson, F.E., Eurasian Contributions to the Circumpolar Active Layer Monitoring (CALM) Workshop, Polar Geogr., 2004, no. 28, pp. 253–340.

  36. Osterkamp, T.E., The Recent Warming of Permafrost in Alaska, Global Planet. Change, 2005, no. 49, pp. 187–202. Doi: 10.1016/j.gloplacha.2005.09.001

  37. Semiletov, I.P., Aquatic Sources and Sinks of CO2 and CH4 in the Polar Regions, J. of the Atmospheric Sciences, 1999, no. 56, pp. 286–306.

  38. Smith, S.L., Burgess, M.M., Riseborough, D., and Nixon, F.M., Recent Trends from Canadian Permafrost Thermal Monitoring Network Sites, Permafrost and Periglacial Processes, 2005, no. 16, pp. 19–30.

  39. Smith, L.C., Sheng, Y., MacDonald, G.M., and Hinzman, L.D., Disappearing Arctic lakes, Science, 2005, vol. 308, no. 5727, pp. 14–29.

    Article  Google Scholar 

  40. WMO. WDCGG data summary 2005. GAV Data. 2005, vol. 4, no. 11, CD-ROM.

  41. WMO. WDCGG data summary 2005. GAV Data. 2005. vol. 4, no. 29.

  42. Zhang, X., Vincent, L.A., Hogg, W.D., and Niitsoo, A., Temperature and Precipitation Trends in Canada During the 20th Century, Atmos-Ocean, 2000, no. 38, pp. 395–429.

  43. Zhang, X., Harvey, K.D., Hogg, W.D., and Yuzyk, T.R., Trends in Canadian Streamflow, Water Resour. Res., 2001, vol. 37, no. 4, pp. 987–998.

    Article  Google Scholar 

  44. Zhang, T., Spatial and Temporal Variability in Active Layer Thickness over the Russian Arctic Drainage Basin, J. Geophys. Res., 2005, vol. 110, no. D16101. doi: 10.1029/2004JD005642

  45. Zhuang, Q., Melillo, J.M., Kicklighter, D.W., et al., Methane Fluxes Between Terrestrial Ecosystems and the Atmosphere at Northern High Latitudes During the Past Century: A Retrospective Analysis with a Process-Based Biogeochemistry Model, Glob. Biogeochem. Cycles, 2004, vol. 18, no. 3, GB3010, pp. 34–51.

    Article  Google Scholar 

  46. www.cru.uea.ac.uk/cru/data

  47. www.ipcc-data.org

  48. http://climatechange.igce.ru

  49. www.gtnp.org

  50. http://www.ikz.ru

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Dzyuba, I.S. Zektser, 2011, published in Vodnye Resursy, 2011, Vol. 38, No. 1, pp. 20–29.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dzyuba, A.V., Zektser, I.S. Relationships between groundwater in permafrost zone and climate changes. Water Resour 38, 29–38 (2011). https://doi.org/10.1134/S0097807811010027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807811010027

Keywords