Skip to main content
Log in

Principles of regional estimation of infiltration groundwater recharge based on geohydrological models

  • Hydrophysical Processes
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Principles of estimation of infiltration groundwater recharge based on modeling the formation of water balance on the land surface and in the vadose zone are considered. The application of such models for regional discharge evaluation involves zoning of the territory by a set of meteorological, landscape, geological, soil, and hydrogeological factors. The reliability of the obtained estimates of water balance components, including infiltration recharge, should be assessed by correlating the calculated and measured river runoff characteristics for drainage basins within which the water-bearing section in the zone of active water exchange is completely drained. The application of such approach is illustrated by calculations for southwestern Moscow Artesian Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Budagovskii, A.I., Soil Water Evaporation, in Fizika pochvennykh vod (Soil Water Physics), Moscow: Nauka, 1981, pp. 13–95.

    Google Scholar 

  2. Gidrogeodinamicheskie raschety na EVM (Computer-Aided Hydrogeodynamic Calculations), Moscow: Mosk. Gos. Univ., 1994.

  3. Globus, A.M., Pochvenno-geograficheskoe obespechenie agroekologicheskikh matematicheskikh modelei (Soil-Geographical Data Support of Agroecological Mathematical Models), Leningrad: Gidrometeoizdat, 1987.

    Google Scholar 

  4. Demidov, V.N., Numerical Modeling of Rainfall Runoff Formation Processes, Extended Abstract of Doctoral (Phys.-Math.) Dissertation, Moscow: Water Problems Institute, RAS, 2007.

    Google Scholar 

  5. Zektser, I.S., Zakonomernosti formirovaniya podzemnogo stoka i nauchno-metodicheskie osnovy ego izucheniya (Regularities in Subsurface Runoff Formation and Scientific-Methodological Principles of Its Studying), Moscow: Nauka, 1977.

    Google Scholar 

  6. Konstantinov, A.R., Isparenie v Prirode (Evaporation in Nature), Leningrad: Gidrometeoizdat, 1968.

    Google Scholar 

  7. Koronkevich, N.I., Structure of Water Balance of Territories, in Teoriya i metody upravleniya resursami vod sushi (Theory and Methods for Control of Continental Water Resources), Moscow: Nauka, 1982, pp. 52–68.

    Google Scholar 

  8. Kuchment, L.S. and Gel’fan, A.N., Dinamiko-stokhasticheskie modeli formirovaniya rechnogo stoka (Dynamical-Stochastic Models of River Runoff Formation), Moscow: Nauka, 1993.

    Google Scholar 

  9. Lebedeva, N.A., Estestvennye resursy podzemnykh vod Moskovskogo artezianskogo basseina (Natural Ground-water Resources of the Moscow Artesian Basin), Moscow: Nauka, 1972.

    Google Scholar 

  10. Pashkovskii, I.S., Development of Groundwater Flow Models in the vadose zone-Subsoil Water System and Their Application to Studying Interaction between Subsurface and Surface Waters, Doctoral (Geol.-Miner.) Dissertation, Moscow: Mosk. Gos. Univ., 1985.

    Google Scholar 

  11. Pashkovskii, I.S., Interaction between Subsurface and Surface Waters in the Environment, II konferentsiya pol’zovatelei i partnerov “Geolinka” (II Conference of Users and Partners of Geolink), Moscow: INFOKOMGEO, 2001, pp. 36–40.

    Google Scholar 

  12. Sudnitsin, I.I., Dvizhenie pochvennoi vlagi i vodopotreblenie rastenii (Soil Moisture Movement and Water Consumption by Plants), Moscow: Mosk. Gos. Univ., 1979.

    Google Scholar 

  13. Ukazaniya po raschetu ispareniya s poverkhnosti sushi (Guides for Calculation of Evaporation from Land Surface), Leningrad: Gidrometeoizdat, 1970.

  14. Fedorov, S.F., Issledovanie elementov vodnogo balansa v lesnoi zone Evropeiskoi territorii SSSR (Investigation of the Water-Balance Components in the Forest Zone of the European Area of the USSR), Leningrad: Gidrometeoizdat, 1977.

    Google Scholar 

  15. Shestakov, V.M., Pashkovskii, I.S., and Soifer, A.M., Gidrogeologicheskie issledovaniya na oroshaemykh territoriyakh (Hydrogeological Studies in Irrigated Territories), Moscow: Nedra, 1982.

    Google Scholar 

  16. Shestakov, V.M. and Pozdnyakov, S.P., Geogidrologiya (Geohydrology), Moscow: Akademkniga, 2003.

    Google Scholar 

  17. Allen, R.G., REF-ET Calculation Software for FAO and ASCE Standardized Equations, Kimberly: Univer. of Idacho, 2001.

    Google Scholar 

  18. Chanzy, A., Mumen, M., and Richard, G., Accuracy of Top Soil Moisture Simulation Using a Mechanistic Model with Limited Soil Characterization, Water Res. Research, 2008, vol. 44, W03432. doi:10.1029/2006WR005765.

    Article  Google Scholar 

  19. Chen, X., Rubin, Y., Ma, S., and Baldocchi, D., Observations and Stochastic Modeling of Soil Moisture Control on Evapotranspiration in a Californian Oak Savanna, Water Res. Research, vol. 44, p. W08409. doi:10.1029/2007WR006646.

  20. Freeze, R.A. and Harlan, R.L., Blueprint for a Physically-Based Digitally-Simulated Hydrologic Response Model, J. Hydrology, 1969, vol. 9, pp. 237–258.

    Article  Google Scholar 

  21. Gale, M.R. and Grigal, D.F., Vertical Root Distributions of Northern Tree Species in Relation to Successional Status, Can. J. For. Res., 1987, vol. 17, p. 829–834.

    Article  Google Scholar 

  22. van Genuchten, M.Th., A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 1980, vol. 44, pp. 892–898.

    Article  Google Scholar 

  23. van Genuchten, M.Th., A Numerical Model for Water and Solute Movement in and below the Root Zone, Research Report, no. 121, Riverside: U.S. Salinity laboratory USDA, 1987.

    Google Scholar 

  24. Jones, J.P., Sudicky, E.A., and McLaren, R.G., Application of a Fully-Integrated Surface-Subsurface Flow Model at the Watershed-Scale: A Case Study, Water Res. Research, vol. 44, p. W03407. doi:10.1029/2006WR005603.

  25. Li, K.Y., De Jong, R., Coe, T.R., and Ramankutty, N., Root-Water Uptake Based Upon a New Water Stress Reduction and An Asymptotic Root Distribution Function, Earth Interactions, 2006, vol. 10, no. 14, pp. 1–22.

    Article  Google Scholar 

  26. Liang, X., Lettenmaier, D.P., Wood, E.F., and Burges, S.J., A Simple Hydrologically Based Model of Land Surface Water and Energy Fluxes for General Circulation Models, J. Geophys. Res., 1994, 99(D7), pp. 14415–14428.

    Google Scholar 

  27. Novak, V. and Havrila, J., Transpiration of Plants: A Review of Calculation Methods, Geophys. Res. Abstracts, 2005, vol. 7, pp. 1–5.

    Google Scholar 

  28. Schroeder, P.R., Dozier, T.S., Zappi, P.A., et al., The Hydrologic Evaluation of Landfill Performance (HELP) Model: Engineering Documentation for Version 3, EPA/600/R-94/168b, Washington, DC, 1994.

  29. Schaap, M.G., Leij, F.L., and van Genuchten, M.Th., Rosetta: A Computer Program for Estimating Soil Hydraulic Parameters with Hierarchical Pedotransfer Functions, J. Hydrology, 2001, vol. 251, p. 163–176.

    Article  Google Scholar 

  30. Šimnek, J., van Genuchten, M.Th., and Šejna, M. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Hear, and Multiple Solutes in Variably-Saturated Media. Version 3.0, Riverside: Department of Environ. Sciences Univer. of California Riverside, 2005.

    Google Scholar 

  31. Zhang, L., Hickel, K., Dawes, W.R., et al., A Rational Function Approach for Estimating Mean Annual Evapotranspiration, Water Res. Research, 2004, vol. 40, W02502. doi:10.1029/2003WR002710.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.O. Grinevskii, S.P. Pozdnyakov, 2010, published in Vodnye Resursy, 2010, Vol. 37, No. 5, pp. 543–557.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinevskii, S.O., Pozdnyakov, S.P. Principles of regional estimation of infiltration groundwater recharge based on geohydrological models. Water Resour 37, 638–652 (2010). https://doi.org/10.1134/S0097807810050040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807810050040

Keywords

Navigation