Skip to main content
Log in

Peculiarities of annual variations in the concentration of iron compounds in the water-bottom sediments system of the Mozhaisk Reservoir

  • Water Quality and Protection: Environmental Aspects
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Annual variations in concentrations of Fe forms in the bottom water (0–70 cm from the bottom, by layers), pore water, and in solid phase of silts (25 cm, by layers) of the Krasnovidovo Pool channel area of the Mozhaisk Reservoir are studied. A drastic increase in the concentration and ratio of Fesusp/Fedis in the water layer 0–20 cm from the bottom is detected. Fe(II) dominates in dissolved and suspended forms. The concentrations of Fe(III) reaching 2–3 mg/l were for the fist time revealed in the pore water of silts (Eh ∼ −120 mV). The factors responsible for this phenomenon are discussed. Fe flux from sediments is tentatively assessed as 0.2–0.6 mg Fe m2/day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arinushkina, E.V., Rukovodstvo po khimicheskomu analizu pochv (Guide on Soil Chemical Analysis), Moscow: Mosk. Gos. Univ., 1961.

    Google Scholar 

  2. Asatiani, V.S., Biokhimicheskii analiz (Biochemical Analysis), Tbilisi: Tsodna, 1962, vol. 1.

    Google Scholar 

  3. Vinogradova, N.N., Suspended Matter and Bottom Sediments, in Kompleksnye issledovaniya vodokhranilishch (Multidisciplinary Studies of Reservoirs), Moscow: Mosk. Gos. Univ., 1979, issue III, pp. 231–261.

    Google Scholar 

  4. Vodyanitskii, Yu.N., Khimiya i mineralogiya pochvennogo zheleza (Chemistry and Mineralogy of Soil Iron), Moscow: Pochv. Inst. RASKhN, 2003.

    Google Scholar 

  5. Garrels, R. and Christ, Ch., Solutions, Minerals, and Equilibria, New York: Harper and Row, 1965.

    Google Scholar 

  6. Ershova, M.G., Water Masses, in Kompleksnye issledovaniya vodokhranilishch (Multidisciplinary Studies of Reservoirs), Moscow: Mosk. Gos. Univ., 1979, issue III, pp. 165–192.

    Google Scholar 

  7. Zakhar’evskii, M.S., Express Method for the Determination of Oxidation-Reduction Potential of Bioloigical Systems, Mikrobiologiya, 1940, vol. 9, no. 9–10, pp. 50–55.

    Google Scholar 

  8. Kortsenshtein, V.N., Rastvorennye gazy podzemnoi gidrosfery Zemli (Dissolved Gases of the Subsurface Hydrosphere of the Earth), Moscow: Nedra, 1984.

    Google Scholar 

  9. Krauskopf, K.B., Separation of Manganese and Iron in Sedimentation Process, in Geokhimiya litogeneza (Geochemistry of Lithogenesis), Moscow: Inostrannaya Literatura, 1963, pp. 259–293.

    Google Scholar 

  10. Kuznetsov, S.I. and Romanenko, V.I., Oxidation-Reduction Potential in Surface Layers of Silt Deposits in Different Types of Lakes, Dokl. Akad. Nauk SSSR, 1963, vol. 151, no. 3, pp. 351–355.

    Google Scholar 

  11. Linnik, P.N., and Nabivanets, B.I., Formy Migratsii Metallov v Presnykh Poverkhnostnykh Vodakh (Forms of Migration of Metals in Fresh Surface Waters), Leningrad: Gidrometeoizdat, 1986.

    Google Scholar 

  12. Martynova, M.V., Samplers for Studying Near-Bed Water, in Voprosy gidrologicheskogo priborostroeniya (Issues of Hydrological Equipment), Leningrad: Gidrometeoizdat, 1977, pp. 75–77.

    Google Scholar 

  13. Martynova, M.V., The Role of Bottom Sediments in Nitrogen and Phosphorus Turnover in the Mozhaisk Reservoir, in Protsessy formirovaniya kachestva vody v prit’evykh vodokhranilishchakh (Processes of Water Quality Formation in Drinkin-Water Reservoirs), Moscow: Mosk. Gos. Univ., 1979, pp. 49–66.

    Google Scholar 

  14. Martynova, M.V., Spatial and Temporal Distributions of Phosphorus Compounds in the Bottom Water of a Small Reservoir, Vodn. Resur., 2004, vol. 31, no. 3, pp. 318–324 [Water Resour. (Engl. Transl.), vol. 31, no. 3, pp. 290–296].

    Google Scholar 

  15. Martynova, M.V., On the Effect of Watershed Size on the Internal Phosphorus Load, Geogr. Prir. Res., 2005, no. 3, pp. 24–28.

  16. Martynova, M.V. and Shmideberg, N.A., On Methods for the Determination of Different Phosphorus Forms in Bottom Sediments, Gidrokhim. Mater., 1983, vol. 85, pp. 49–55.

    Google Scholar 

  17. Martynova, M.V. and Shmideberg, N.A., On the Chemical Composition of Silts in the Mozhaisk Reservoir, in Kompleksnye issledovaniya vodokhranilishch (Multidisciplinary Studies of Reservoirs), Moscow: Mosk. Gos. Univ., 1980, issue V, pp. 125–134.

    Google Scholar 

  18. Romanenko, V.I., Mikrobiologicheskie protsessy produktsii i destruktsii organicheskogo veshchestva vo vnutrennikh vodoemakh (Microbiological Processes of Production and Destruction of Organic Matter in Inland Water Bodies), Leningrad: Nauka, Leningr. Otd., 1985.

    Google Scholar 

  19. Romanenko, V.I. and Kuznetsov, S.I., Ekologiya mikroorganizmov presnykh vod: Laboratornoe rukovodstvo (Ecology of Freshwater Microorganisms: Laboratory Guide), Leningrad: Nauka, 1974.

    Google Scholar 

  20. Sapozhnikov, V.V. and Nosova, V.V., Methods and Some Preliminary Results of the Determination of Various Phosphorus Forms in the Mozhaisk Reservoir Water, in Gidrokhimicheskie issledovaniya poverkhnostnykh i podzemnykh vod raiona Mozhaiskogo vodokhranilishcha (Hydrochemical Studies of Surface and Subsurface Waters of Mozhaisk Reservoir Area), Moscow: Mosk. Gos. Univ., 1977, pp. 23–34.

    Google Scholar 

  21. Strakhov, N.M., Tipy litogeneza i ikh evolyutsiya v istorii Zemli (Types of Lithogenesis and Their Evolution in the Earth History), Moscow: Gosgeotekhizdat, 1963.

    Google Scholar 

  22. Alperin, M.E., Martens, Ch.S., Albert, D.B., et al., Benthic Fluxes and Pore Water Concentration Profiles of Dissolved Organic Carbon in Sediments from North California Continental Slope, Geochim. Cosmochim. Acta, 1999, vol. 63, nos. 3/4, pp. 427–448.

    Article  Google Scholar 

  23. Andersson, A., Relative Efficienty of Nine Different Soil Extractants, Swedish L. Agric. Res., 1975, no. 5, pp. 125–135.

  24. Buffalar, S.E. and Allen, H.E., Sediment Pore Water Collection Methods for Trace Metal Analysis: a Review, Water Res., 1995, vol. 29, no. 1, pp. 165–187.

    Article  Google Scholar 

  25. Carey, E. and Taillefert, M., The Role of Soluble Fe(III) in the Cycling of Iron and Sulfur in Coastal Marine Sediments, Limnol. Oceanogr., 2005, vol. 50, no. 4, pp. 1129–1141.

    Article  Google Scholar 

  26. Einsele, W., Versuch Eiene Theorie Der Dynamic Der Mangan-and Eisenschichtung Im Eutrophen Seen, Naturwissenschaften, 1940, vol. 28, pp. 280–285.

    Article  Google Scholar 

  27. Elrod, V.A., Berelson, W.M.., Coale, K.H., and Johnson, K.H., The Flux of Iron from Continental Shelf Sediments: a Missing Source for Global Budgets, Geophys. Res. Lett., 2004, vol. 31, no. 12, pp. L12307/1–L12307/4.

    Article  Google Scholar 

  28. Golterman, H.L. and Clumo, R.S., Methods for Chemical Analysis of Fresh Water, Oxford: Blackwell Scientific Publications, 1969.

    Google Scholar 

  29. Johnson, K.S., Chavez, F.P., and Friederich, G.E., Continental Shelf Sediment as Primary Source of Iron for Coastal Phytoplankton, Nature, 1999, vol. 358, no. 6483, pp. 697–700.

    Article  Google Scholar 

  30. Kostka, J.E., Dalton, D.D., Skelton, H., et al., Growth of Iron-Reducing Bacteria on Clay Minerals as the Sole Electron Acceptor and Comparison of Growth Yields on a Variety of Oxidized Iron Forms, Appl. Environ. Microbiol., 2002, vol. 68, no. 12, pp. 6256–6262.

    Article  Google Scholar 

  31. Lovely, D.R. and Phillips, E.J.P., Availability of Ferric Iron for Microbial Reduction in Bottom Sediments of the Freshwater Tidal Potomac River, Appl. Environ. Microbiol., 1986, vol. 52, no. 4, pp.751–757.

    Google Scholar 

  32. Moalla, S.M.N., Awadallah, R.M., Rashed, M.N., and Soltan, M.E., Distribution and Chemical Fractionation of Some Heavy Metals in Bottom Sediments of Lake Nasser, Hydrobiol., 1998, vol. 364, pp. 31–40.

    Article  Google Scholar 

  33. Postma, D., Concentration of Mn and Separation from Fe in Sediments. — 1. Kinetics and Stoicheometry of the Reaction between Birnessite and Dissolved Fe(II) at 10°C, Geochim. Cosmochim. Acta, 1985, vol. 49, no. 4, pp. 1023–1033.

    Article  Google Scholar 

  34. Redshaw, C.J., Mason, C.F., Hayes, C.R., and Roberts, R.D., Factors, Influencing Phosphate Exchange across the Sediment-Water Interface of Eutrophic Reservoirs, Hydrobiol., 1990, vol. 192, nos. 2–3, pp. 233–245.

    Article  Google Scholar 

  35. Stumm, W. and Morgan, J.J., Aquatic Chemistry, New York: Wiley, 1981.

    Google Scholar 

  36. Van Cappelin, P. and Wang, Y., Cycling of Iron and Manganese in Surface Sediments: A General Theory for the Coupled Transport and Reaction of Carbon, Oxygen, Nitrogen Sulfur, Iron and Manganese, Am. J. Sci., 1996, vol. 296, no. 3, pp. 197–243.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.V. Martynova, 2009, published in Vodnye Resursy, 2009, Vol. 36, No. 1, pp. 80–88.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martynova, M.V. Peculiarities of annual variations in the concentration of iron compounds in the water-bottom sediments system of the Mozhaisk Reservoir. Water Resour 36, 76–85 (2009). https://doi.org/10.1134/S0097807809010072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807809010072

Keywords

Navigation