Skip to main content
Log in

The use of fluorescence of humic substance to characterize the hydrological structure of water bodies: Case study of the Rybinsk Reservoir

  • Hydrophysical Processes
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

The results of comparative studies of fluorescent characteristic of humic substance and electroconductivity in the surface water layer in the Rybinsk Reservoir are presented. The hydrological structures obtained with the use of these characteristics generally coincide. This opens the way to the use of humic substance fluorescence, which allows remote measurement, as an indicator of the hydrological structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avakyan, A.B., Litvinov, A.S., and Riv’er, I.K., Sixty Year’s Experience in Operating the Rybinsk Reservoir, Vodn. Resur., 2002, vol. 29, no. 1, pp. 5–16 [Water Resour. (Engl. Transl.), vol. 29, no. 1, pp. 1–11].

    Google Scholar 

  2. Bikbulatov, E.S., Lebedev, Yu.M., Litvinov, A.S., et al., Hydrochemical Characteristics of the Upper Volga Reservoirs in the Low-Water Season of 1997, Vodn. Resur., 2001, vol. 28, no. 5, pp. 606–614 [Water Resour. (Engl. Transl.), vol. 28, no. 5, pp. 535–552].

    Google Scholar 

  3. Butorin, N.V., Gidrologicheskie protsessy i dinamika vodnykh mass v vodokhranilishchakh Volzhskogo kaskada (Hydrological Processes and Water Mass Dynamics in the Volga Chain Reservoirs), Leningrad: Nauka, 1969.

    Google Scholar 

  4. Glushkov, S.M., Fadeev, V.V., and Chubarov, V.V., Laser Spectrometers for the Diagnostics of Admixtures in Natural Waters, Opt. Atmos. Okeana, 1994, vol. 7, no. 4, pp. 464–473.

    Google Scholar 

  5. Distantsionnye metody issledovaniya okeana (Methods for Remote Sensing of the Ocean), Gorky: IPF AN SSSR, 1987.

  6. Dolenko, T.A. and Fadeev, V.V., Laser Spectroscopy of Natural Waters: Classification and Inverse Problems, in Fizicheskie problemy ekologii (ekologicheskaya fizika) (Physical Environmental Problems (Environmental Physics)), Moscow: Maks Press, 2005, pp. 156–166.

    Google Scholar 

  7. Lapshenkova, T.V., Fadeev, V.V., Chubarov, V.V., and Gordeev, V.V., Laser Fluorimetry of Baltic Sea Water with the Use of Internal Reference Point Method, in Geologicheskaya istoriya i geokhimiya baltiiskogo morya (Geological History and Geochemistry of the Baltic Sea), Moscow: Nauka, 1984, pp. 73–80.

    Google Scholar 

  8. Measures, R.M., Laser Remote Sensing. Fundamentals and Applications, New York: Wiley, 1984.

    Google Scholar 

  9. Nemal’tsev, A.S., Fadeeva, I.V., and Chubarov, V.V., Laser Fluorimetry Method for the Identification of Water Masses in Continental Water Bodies, Vestn. Mosk. Univ., Ser. 5, Geography, 1985, no. 5. pp. 43–49.

  10. Okeanologiya. Khimiya okeana (Oceanology. Ocean Chemistry), Moscow: Nauka, 1979.

  11. Perminova, I.V., Analysis, Classification, and Prediction of Humic Acid Properties, Doctoral (Chem.) Dissertation, Moscow: Mos. State. Univ., 2004.

    Google Scholar 

  12. Roshchupko, V.F., Seasonal Dynamics of Organic Matter Concentration and Input in the Sheksninskii Pool of the Rybinsk Reservoir, Tr. IBV AN SSSR, 1972, no. 23 (26), pp. 62–72.

  13. Rukovodstvo po khimicheskomu analizu poverkhnostnykh vod sushi (Guidebook on the Chemical Analysis of Surface Continental Waters), Leningrad: Gidrometeoizdat, 1977.

  14. Sinel’nikov, V.E., On Studying Organic Matter of Natural Waters by Luminescence Method, Tr. IBV AN SSSR, 1966, no. 13 (16), pp. 74–80

  15. Sinel’nikov, V.E. and Ryzhikov, B.D., Luminescence Spectra of Some Continental Waters, Tr. IBV AN SSSR, 1966, no. 13 (16), pp. 81–84.

  16. Struganova, I.V., Fadeev, V.V., and Chubarov, V.V., Instrumental Determination of Natural Water Color Index, Vodn. Resur., 1985, no. 4, pp. 136–142.

  17. Tushinskii, S.G., Natural Water Quality: Observation and Prediction, in Itogi nauki i tekhniki. Ser. Okhrana prirodnykh vod i vosproizvedenie prirodnykh resursov (Achievements in Science and Technology. Ser. Natural Water Protection and Reproduction of Water Resources), Moscow: VINITI, 1987, vol. 18.

    Google Scholar 

  18. Fadeev, V.V., Nonlinear Fluorimetry as a Diagnostic Method for Natural Organic Complexes, Vestn. Mosk. Univ., Ser. 3, Phys. Astron., 1998, no. 4, pp. 49–58.

  19. Fortunatov, M.A., Water Transparency and Color Index of the Rybinsk Reservoir as Characteristics of Its Regime, Tr. IBV AN SSSR, 1959, no. 2 (5), pp. 246–357.

  20. Shirfrin, K.S., Vvedenie v optiku okeana (Introduction to Ocean Optics), Leningrad: Gidrometeoizdat, 1983.

    Google Scholar 

  21. Edel’shtein, K.K., Vodnye massy dolinnykh vodokhranilishch (Water Masses of Valley Reservoirs), Moscow: Mosk. Gos. Univ., 1991.

    Google Scholar 

  22. Chekalyuk, A.V., Demidov, A.A., Fadeev, V.V., and Lapshenkova, T.V., Lidar Mapping of Phytoplankton and Organic Matter Distributions in the Baltic Sea, Proc. SPIE-Int. Soc. Opt. Eng., 1992, vol. 1922, pp. 401–405.

    Google Scholar 

  23. Chubarov, V.V. and Fadeev, V.V., Ecological Monitoring in the Caspian Sea (Mouth Zone of River Volga) by Shipboard Laser Spectrometer, EARSEL Proceedings, 2004, vol. 3, no. 3, pp. 316–322.

    Google Scholar 

  24. Dolenko, T.A., Fadeev, V.V., Gerdova, I.V., et al., Fluorescence Diagnostics of Oil Pollution in Costal Marine Waters by Use of Artificial Neural Networks, Appl. Opt., 2002, vol. 41, no. 24, pp. 5155–5166.

    Article  Google Scholar 

  25. Dolenko, S.A., Dolenko, T.A., Fadeev, V.V., and Gerdova, I.V., Time-Resolved Fluorimetry of Two-Fluorophore Organic Systems Using Artificial Neural Networks, Optics Communications, 2002, vol. 213, nos. 4–6, pp. 309–324.

    Article  Google Scholar 

  26. Fadeev, V.V., Lidar Diagnostics of Water Ecosystems: Conception and Methods, Proc. SPIE-Int. Soc. Opt. Eng., 1992, vol. 1922, pp. 410–420.

    Google Scholar 

  27. Fadeev, V.V., Possibility of Standardization of Normalized Fluorescent Parameter as a Measure of Organic Admixtures Concentration in Water and Atmosphere, Proc. SPIE-Int. Soc. Opt. Eng., 1999, vol. 3821, pp. 458–466.

    Google Scholar 

  28. Filippova, E.M., Fadeev, V.V., Chubarov, V.V., et al., Laser Fluorescence Spectroscopy as a Method for Studying Humic Substance, Applied Spectroscopy Rev, 2001, vol. 36, no. 1, pp. 87–117.

    Article  Google Scholar 

  29. Gerdov, M.A., Maslov, D.V., Chubarov, V.V., et al., Shore Based Lidar and Laser Spectrometer with Fiber Probe for Coastal Sea Water Monitoring, EARSEL Workshop on LIDAR Remote Sensing of Land and Sea, Dresden: Abstract book, 2000, pp. 92–92.

    Google Scholar 

  30. Hasson, M.H., Fundamentals of Artificial Neural Networks, Cambridge: MIT Press, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.S. Litvinov, I.V. Fadeeva, V.V. Chubarov, 2008, published in Vodnye Resursy, 2008, Vol. 35, No. 3, pp. 336–347.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litvinov, A.S., Fadeeva, I.V. & Chubarov, V.V. The use of fluorescence of humic substance to characterize the hydrological structure of water bodies: Case study of the Rybinsk Reservoir. Water Resour 35, 319–329 (2008). https://doi.org/10.1134/S009780780803007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S009780780803007X

Keywords

Navigation