Skip to main content
Log in

The Structure of the Essential Spectrum and the Discrete Spectrum of the Energy Operator for Six-Electron Systems in the Hubbard Model. The Second Singlet State

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We consider the energy operator of six-electron systems in the Hubbard model and study the structure of the essential spectrum and the discrete spectrum of the system for the second singlet state of the system. In the one- and two-dimensional cases, it is shown that the essential spectrum of the six-electron second singlet state operator is the union of seven closed intervals, and the discrete spectrum of the system consists of a single eigenvalue lying below (above) the domain of the lower (upper, respectively) edge of the essential spectrum of this operator. In the three-dimensional case, there are the following situations for the essential and discrete spectra of the six-electron second singlet state operator: (a) the essential spectrum is the union of seven closed intervals, and the discrete spectrum consists of a single eigenvalue; (b) the essential spectrum is the union of four closed intervals, and the discrete spectrum is empty; (c) the essential spectrum is the union of two closed intervals, and the discrete spectrum is empty; (d) the essential spectrum is a closed interval, and the discrete spectrum is empty. Conditions are found under which each of the situations takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. J. Hubbard, “Electron correlations in narrow energy bands,” Proc. Roy. Soc. A 276, 238–257 (1963). https://doi.org/10.1098/rspa.1963.0204

    Article  ADS  Google Scholar 

  2. M. C. Gutzwiller, “Effect of correlation on the ferromagnetism of transition metals,” Phys. Rev. Lett. 10 (5), 159–162 (1963). https://doi.org/10.1103/PhysRevLett.10.159

    Article  ADS  Google Scholar 

  3. J. Kanamori, “Electron correlation and ferromagnetism of transition metals,” Prog. Theor. Phys. 30 (3), 275–289 (1963). https://doi.org/10.1143/PTP.30.275

    Article  ADS  CAS  Google Scholar 

  4. P. W. Anderson, “Localized magnetic states in metals,” Phys. Rev. 124, 41–53 (1961). https://doi.org/10.1103/PhysRev.124.41

    Article  ADS  MathSciNet  CAS  Google Scholar 

  5. S. P. Shubin and S. V. Wonsowsky, “On the electron theory of metals,” Proc. Roy. Soc. A 145, 159–172 (1934). https://doi.org/10.1098/rspa.1934.0089

    Article  ADS  CAS  Google Scholar 

  6. Yu. A. Izyumov, “Hubbard model of strong correlations,” Phys. Usp. 38 (4), 385–408 (1995). https://doi.org/10.1070/PU1995v038n04ABEH000081

    Article  ADS  Google Scholar 

  7. D. P. Arovas, E. Berg, S. A. Kivelson, and S. Raghy, “The Hubbard model,” Annu. Rev. Condens. Matter Phys. 13, 239–274 (2022). https://doi.org/10.1146/annurev-conmatphys-031620-102024

    Article  ADS  Google Scholar 

  8. S. G. Ovchinnikov and E. I. Shneider, “Spectral functions in the Hubbard model with half-filling,” Phys. Solid State 46 (8), 1469–1473 (2004). https://doi.org/10.1134/1.1788780

    Article  ADS  CAS  Google Scholar 

  9. Yu. A. Izyumov, N. I. Chashchin, and D. S. Alekseev, Theory of Strongly Correlated Systems. Generating Functional Method (Regulyarn. Khaotich. Dinamika, Izhevsk, 2006) [in Russian].

    Google Scholar 

  10. B. V. Karpenko, V. V. Dyakin, and G. L. Budrina, “Two electrons in the Hubbard model,” Fiz. Metallov Metalloved. 61, 702–706 (1986).

    CAS  Google Scholar 

  11. S. M. Tashpulatov, “Spectral properties of three-electron systems in the Hubbard model,” Theor. Math. Phys. 179 (3), 712–728 (2014). https://doi.org/10.1007/s11232-014-0173-y

    Article  MathSciNet  CAS  Google Scholar 

  12. S. M. Tashpulatov, “Spectra of the energy operator of four-electron systems in the triplete state in the Hubbard model,” J. Phys. Conf. Ser. 697, 012025 (2016). https://doi.org/10.1088/1742-6596/697/1/012025

    Article  CAS  Google Scholar 

  13. S. M. Tashpulatov, “The structure of essential spectra and discrete spectrum of four-electron systems in the Hubbard model in a singlet state,” Lobachevskii J. Math. 38 (3), 530–541 (2017). https://doi.org/10.1134/S1995080217030246

    Article  MathSciNet  Google Scholar 

  14. S. M. Tashpulatov, “Structure of essential spectrum and discrete spectra of the energy operator of five-electron systems in the Hubbard model-doublet state,” in Operator Theory and Differential Equations, Ed. by A. G. Kusraev and Z. D. Totieva (Birkhäuser, Cham, 2021), pp. 275–301. https://doi.org/10.1007/978-3-030-49763-7_19

    Chapter  Google Scholar 

  15. S. M. Tashpulatov, “Structure of essential spectra and discrete spectra of the energy operator of six-electron systems in the Hubbard model. First quintet and first singlet states,” J. Appl. Math. Phys. 10 (11), 3424–3461 (2022). https://doi.org/10.4236/jamp.2022.1011227

    Article  Google Scholar 

  16. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 1: Functional Analysis (Academic, New York, 1972; Mir, Moscow, 1977).

    Google Scholar 

  17. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 4: Operator Analysis (Academic, New York, 1978; Mir, Moscow, 1982).

    Google Scholar 

  18. T. Ichinose, “Spectral properties of tensor products of linear operators. I,” Trans. Am. Math. Soc. 235, 75–113 (1978). https://doi.org/10.1090/S0002-9947-1978-0472915-2

    Article  MathSciNet  Google Scholar 

  19. T. Ichinose, “Spectral properties of tensor products of linear operators. II: The approximate point spectrum and Kato essential spectrum,” Trans. Am. Math. Soc. 237, 223–254 (1978). https://doi.org/10.1090/S0002-9947-1978-0479372-0

    Article  MathSciNet  Google Scholar 

  20. T. Ichinose, “Tensor products of linear operators. Spectral theory,” Banach Center Publ. 8, 295–300 (1982).

    Article  Google Scholar 

  21. M. A. Naimark, Normed Rings (Nauka, Moscow, 1968; Wolters-Noordhoff, Groningen 1970).

  22. V. V. Val’kov, S. G. Ovchinnikov, and O. G. Petrakovskii, “Excitation spectrum of two-magnon systems in an easy-axis quasi-dimensional ferromagnet,” Fiz. Tverd. Tela 30 (10), 3044–3047 (1988).

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Tashpulatov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated from Trudy Instituta Matematiki i Mekhaniki UrO RAN, Vol. 29, No. 3, pp. 210 - 230, 2023 https://doi.org/10.21538/0134-4889-2023-29-3-210-230.

Translated by E. Vasil’eva

Publisher's Note Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tashpulatov, S.M. The Structure of the Essential Spectrum and the Discrete Spectrum of the Energy Operator for Six-Electron Systems in the Hubbard Model. The Second Singlet State. Proc. Steklov Inst. Math. 323 (Suppl 1), S279–S299 (2023). https://doi.org/10.1134/S0081543823060226

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543823060226

Keywords

Navigation