Skip to main content
Log in

Minimizing Sequences in a Constrained DC Optimization Problem

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

A smooth nonconvex optimization problem is considered, where the equality and inequality constraints and the objective function are given by DC functions. First, the original problem is reduced to an unconstrained problem with the help of I. I. Eremin’s exact penalty theory, and the objective function of the penalized problem also turns out to be a DC function. Necessary and sufficient conditions for minimizing sequences of the penalized problem are proved. On this basis, a “theoretical method” for constructing a minimizing sequence in the penalized problem with a fixed penalty parameter is proposed and the convergence of the method is proved. A well-known local search method and its properties are used for developing a new global search scheme based on global optimality conditions with a varying penalty parameter. The sequence constructed using the global search scheme turns out to be minimizing in the “limit” penalized problem, and each of its terms \(z^{k+1}\) turns out to be an approximately critical vector for the local search method and an approximate solution of the current penalized problem \((\mathcal{P}_{k})\triangleq(\mathcal{P}_{\sigma_{k}})\). Finally, under an additional condition of “approximate feasibility,” the constructed sequence turns out to be minimizing for the original problem with DC constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. F. P. Vasil’ev, Optimization Methods (MTsNMO, Moscow, 2011), Vols. 1, 2 [in Russian].

    Google Scholar 

  2. V. V. Vasin and I. I. Eremin, Operators and Iterative Processes of Fejér Type: Theory and Applications (Inst. Komp. Issled., Moscow, 2005; De Gruyter, Berlin, 2009).

    Google Scholar 

  3. V. F. Dem’yanov, Extremum Conditions and Calculus of Variations (Vysshaya Shkola, Moscow, 2005) [in Russian].

    Google Scholar 

  4. Yu. G. Evtushenko, Numerical Optimization Techniques (Nauka, Moscow, 1982; Springer, New York, 1985).

    Google Scholar 

  5. I. I. Eremin, “The penalty method in convex programming,” Soviet Math. Dokl. 8, 459–462 (1967).

    Google Scholar 

  6. I. I. Eremin, “The penalty method in convex programming,” Cybernetics 3 (4), 53–56 (1967). https://doi.org/10.1007/bf01071708

    Article  MathSciNet  Google Scholar 

  7. I. I. Eremin and N. N. Astaf’ev, Introduction to the Theory of Linear and Convex Programming (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  8. I. I. Eremin and V. D. Mazurov, Nonstationary Processes of Mathematical Programming (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  9. I. I. Eremin, Contradictory Models of Optimal Planning (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  10. V. G. Zhadan, Optimization Methods, Parts 1, 2 (MFTI, Moscow, 2015) [in Russian].

    Google Scholar 

  11. I. V. Konnov, Nonlinear Optimization and Variational Inequalities (Izd. Kazan. Univ., Kazan, 2013) [in Russian].

    Google Scholar 

  12. A. S. Strekalovsky, Elements of Nonconvex Optimization (Nauka, Novosibirsk, 2003) [in Russian].

    Google Scholar 

  13. A. S. Strekalovsky and A. V. Orlov, Bimatrix Games and Bilinear Programming (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  14. A. S. Strekalovsky and A. V. Orlov, Linear and Quadratic Linear Problems of Two-Level Optimization (Izd. SO RAN, Novosibirsk, 2019) [in Russian].

    Google Scholar 

  15. A. S. Strekalovsky, “New global optimality conditions in a problem with DC constraints,” Trudy Inst. Mat. Mekh. UrO RAN 25 (1), 245–261 (2019). https://doi.org/10.21538/0134-4889-2019-25-1-245-261

    Article  Google Scholar 

  16. A. S. Strekalovsky, “Elements of global search in the general DC optimization problem,” Itogi Nauki Tekh. Sovrem. Mat. Prilozh. Temat. Obzory 196, 114–127 (2021). https://doi.org/10.36535/0233-6723-2021-196-114-127

    Article  Google Scholar 

  17. A. G. Sukharev, A. V. Timokhov, and V. V. Fedorov, A Course in Optimization Methods, 2nd ed. (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  18. J.-F Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal, Numerical Optimization: Theoretical and Practical Aspects (Springer, Berlin, 2006).

    Google Scholar 

  19. J. Burke, “An exact penalization viewpoint of constrained optimization,” SIAM J. Control Optim. 29 (4), 968–998 (1991). https://doi.org/10.1137/0329054

    Article  ADS  MathSciNet  Google Scholar 

  20. R. Byrd, G. Lopez-Calva, and J. Nocedal, “A line search exact penalty method using steering rules,” Math. Progr. 133 (1–2), 39–73 (2012). https://doi.org/10.1007/s10107-010-0408-0

    Article  MathSciNet  Google Scholar 

  21. G. Di Pillo, S. Lucidi, and F. Rinaldi, “An approach to constrained global optimization based on exact penalty functions,” J. Global Optim. 54 (2), 251–260 (2012). https://doi.org/10.1007/s10898-010-9582-0

    Article  MathSciNet  Google Scholar 

  22. M. Dur and J. B. Hiriart-Urruty, “Testing copositivity with the help of difference-of-convex optimization,” Math. Progr. 140 (1), 31–43 (2013). https://doi.org/10.1007/s10107-012-0625-9

    Article  MathSciNet  Google Scholar 

  23. Frontiers in Global Optimization, Ed. by C. A. Floudas and P. M. Pardalos (Kluwer Acad., Dordrecht, 2004).

    Google Scholar 

  24. A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques (Wiley, New York, 1968).

    Google Scholar 

  25. M. Gaudioso, T. V. Gruzdeva, and A. S. Strekalovsky, “On numerical solving the spherical separability problem,” J. Global Optim. 66 (1), 21–34 (2016). https://doi.org/10.1007/s10898-015-0319-y

    Article  MathSciNet  Google Scholar 

  26. J.-B. Hiriart-Urruty, “Generalized differentiability, duality and optimization for problems dealing with difference of convex functions,” in Convexity and Duality in Optimization, ed. by J. Ponstein (Springer, Berlin, 1985), Ser. Lecture Notes in Economics and Mathematical Systems, Vol. 256, pp. 37–69. https://doi.org/10.1007/978-3-642-45610-7_3

    Chapter  Google Scholar 

  27. J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms (Springer, Berlin, 1993).

    Book  Google Scholar 

  28. R. Horst and H. Tuy, Global Optimization: Deterministic Approaches (Springer, Berlin, 1993).

    Book  Google Scholar 

  29. A. Kruger, “Error bounds and metric subregularity,” Optim. 64 (1), 49–79 (2015). https://doi.org/10.1080/02331934.2014.938074

    Article  MathSciNet  Google Scholar 

  30. H. A. Le Thi, T. Pham Dinh, and H. V. Ngai, “Exact penalty and error bounds in DC programming,” J. Global Optim. 52 (3), 509–535 (2012). https://doi.org/10.1007/s10898-011-9765-3

    Article  MathSciNet  Google Scholar 

  31. H. A. Le Thi, H. V. Ngai, and T. Pham Dinh, “DC Programming and DCA for general DC programs,” in Advanced Computational Methods for Knowledge Engineering, Ed. by D. Tien, A. L. T. Hoai, and T. N. Ngoc (Springer, Cham, 2014), Ser. Advances in Intelligent Systems and Computing, Vol. 282, pp. 15–35. https://doi.org/10.1007/978-3-319-06569-4_2

    Chapter  Google Scholar 

  32. W. Mascarenhas, “The BFGS methods with exact line search fails for nonconvex objective functions,” Math. Progr. 99 (1), 49–61 (2004). https://doi.org/10.1007/s10107-003-0421-7

    Article  Google Scholar 

  33. W. Mascarenhas, “On the divergence of line search methods,” Comput. Appl. Math. 26 (1), 129–169 (2007). https://doi.org/10.1590/S0101-82052007000100006

    Article  MathSciNet  Google Scholar 

  34. W. Mascarenhas, “Newton’s iterates can converge to non-stationary points,” Math. Progr. 112 (2), 327–334 (2008). https://doi.org/10.1007/s10107-006-0019-y

    Article  MathSciNet  Google Scholar 

  35. J. Nocedal and S. J. Wright, Numerical Optimization (Springer, Berlin, 2006).

    Google Scholar 

  36. J. S. Pang, “Three modelling paradigms in mathematical programming,” Math. Progr. 125 (2), 297–323 (2010). https://doi.org/10.1007/s10107-010-0395-1

    Article  Google Scholar 

  37. J. S. Pang, M. Razaviyan, and A. Alvarado, “Computing B-stationary points of nonsmooth DC programs,” Math. Oper. Res. 42 (1), 95–118 (2016). https://doi.org/10.1287/moor.2016.0795

    Article  MathSciNet  Google Scholar 

  38. R. T. Rockafellar, Convex Analysis (Princeton Univ., Princeton, 1970).

    Book  Google Scholar 

  39. A. S. Strekalovsky, “On solving optimization problems with hidden nonconvex structures,” in Optimization in Science and Engineering, Ed. by T. M. Rassias, C. A. Floudas, and S. Butenko (Springer, New York, 2014), pp. 465–502. https://doi.org/10.1007/978-1-4939-0808-0_23

    Chapter  Google Scholar 

  40. A. S. Strekalovsky, “On local search in d.c. optimization problems,” Appl. Math. Comput. 255, 73–83 (2015). https://doi.org/10.1016/j.amc.2014.08.092

    Article  MathSciNet  Google Scholar 

  41. A. S. Strekalovsky, “Local search for nonsmooth DC optimization with DC equality and inequality constraints,” in Numerical Nonsmooth Optimization: State of the Art Algorithms, Ed. by A. M. Bagirov, M. Gaudioso, N. Karmitsa, M. M. Makela, and S. Taheri (Springer Internat., New York, 2020), pp. 229–261. https://doi.org/10.1007/978-3-030-34910-3_7

    Chapter  Google Scholar 

  42. A. S. Strekalovsky and I. M. Minarchenko, “A local search method for optimization problem with d.c. inequality constraints,” Appl. Math. Model. 58, 229–244 (2018). https://doi.org/10.1016/j.apm.2017.07.031

    Article  MathSciNet  Google Scholar 

  43. A. S. Strekalovsky, “Global optimality conditions in nonconvex optimization,” J. Optim. Theory Appl. 173 (3), 770–792 (2017). https://doi.org/10.1007/s10957-016-0998-7

    Article  MathSciNet  Google Scholar 

  44. A. S. Strekalovsky, “Global optimality conditions and exact penalization,” Optim. Lett. 13 (3), 597–615 (2019). https://doi.org/10.1007/s11590-017-1214-x

    Article  MathSciNet  Google Scholar 

  45. A. S. Strekalovsky, “On global optimality conditions for D.C. minimization problems with D.C. constraints,” J. Appl. Numer. Optim. 3 (1), 175–196 (2021). https://doi.org/10.23952/jano.3.2021.1.10

    Article  Google Scholar 

  46. A. S. Strekalovsky and M. V. Yanulevich, “On global search in nonconvex optimal control problems,” J. Global Optim. 65 (1), 119–135 (2016). https://doi.org/10.1007/s10898-015-0321-4

    Article  MathSciNet  Google Scholar 

  47. H. Tuy, “D.C. Optimization: Theory, methods and algorithms,” in Handbook of Global Optimization, Ed. by R. Horst and P. M. Pardalos (Kluwer Acad., Dordrecht, 1995), pp. 149–216.

    Google Scholar 

  48. W. Zangwill, “Non-linear programming via penalty functions,” Manag. Sci. 13 (5), 344–358 (1967). https://doi.org/10.1287/mnsc.13.5.344

    Article  MathSciNet  Google Scholar 

  49. W. I. Zangwill, Nonlinear Programming: A Unified Approach (Prentice-Hall, Englewood Cliffs, NJ, 1969).

    Google Scholar 

  50. A. J. Zaslavski, “Exact penalty property in optimization with mixed constraints via variational analysis,” SIAM J. Optim. 23 (1), 170–187 (2013). https://doi.org/10.1137/120870840

    Article  MathSciNet  Google Scholar 

Download references

Funding

The research was funded by the Ministry of Science and Higher Education of the Russian Federation within the project “Theoretical foundations, methods, and high-performance algorithms for continuous and discrete optimization to support interdisciplinary research” (no. of state registration 121041300065-9, project code FWEW-2021-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Strekalovsky.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated from Trudy Instituta Matematiki i Mekhaniki UrO RAN, Vol. 29, No. 3, pp. 185 - 209, 2023 https://doi.org/10.21538/0134-4889-2023-29-3-185-209.

Translated by E. Vasil’eva

Publisher's Note Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strekalovsky, A.S. Minimizing Sequences in a Constrained DC Optimization Problem. Proc. Steklov Inst. Math. 323 (Suppl 1), S255–S278 (2023). https://doi.org/10.1134/S0081543823060214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543823060214

Keywords

Navigation