Skip to main content
Log in

Structures of Classical and Special Discontinuities for the Generalized Korteweg–de Vries–Burgers Equation in the Case of a Flux Function with Four Inflection Points

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We study the structure of the set of traveling wave solutions for the generalized Korteweg–de Vries–Burgers equation with the flux function having four inflection points. In this case there arise two monotone structures of stable special discontinuities propagating at different velocities (such a situation has not been described earlier in the literature). Both structures of special discontinuities are linearly stable. To analyze the linear stability of the structures of classical and special discontinuities, we apply a method based on the use of the Evans function. We also propose a conjecture that establishes the admissibility of classical discontinuities in the case when there are two stable special discontinuities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

References

  1. I. B. Bakholdin, “The structure of evolutional jumps in reversible systems,” J. Appl. Math. Mech. 63 (1), 45–53 (1999) [transl. from Prikl. Mat. Mekh. 63 (1), 52–62 (1999)].

    Article  MathSciNet  Google Scholar 

  2. I. B. Bakholdin, “Jumps in models described by generalized Korteweg–de Vries equations,” Fluid Dyn. 34 (4), 534–545 (1999) [transl. from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 95–109 (1999)].

    MathSciNet  Google Scholar 

  3. I. B. Bakholdin, Non-dissipative Discontinuities in Continuum Mechanics (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  4. I. B. Bakholdin, “Time-invariant and time-varying discontinuity structures for models described by the generalized Korteweg–Burgers equation,” J. Appl. Math. Mech. 75 (2), 189–209 (2011) [transl. from Prikl. Mat. Mekh. 75 (2), 271–302 (2011)].

    Article  MathSciNet  Google Scholar 

  5. I. B. Bakholdin, “Theory and classification of the reversible structures of discontinuities in hydrodynamic-type models,” J. Appl. Math. Mech. 78 (6), 599–612 (2014) [transl. from Prikl. Mat. Mekh. 78 (6), 833–852 (2014)].

    Article  MathSciNet  Google Scholar 

  6. J. L. Bona and M. E. Schonbeck, “Travelling-wave solutions to the Korteweg–de Vries–Burgers equation,” Proc. R. Soc. Edinburgh A 101 (3–4), 207–226 (1985).

    Article  MathSciNet  Google Scholar 

  7. A. P. Chugainova, A. T. Il’ichev, A. G. Kulikovskii, and V. A. Shargatov, “Problem of arbitrary discontinuity disintegration for the generalized Hopf equation: Selection conditions for a unique solution,” IMA J. Appl. Math. 82 (3), 496–525 (2017).

    MathSciNet  Google Scholar 

  8. A. P. Chugainova, G. V. Kolomiytsev, and V. A. Shargatov, “On the instability of monotone traveling-wave solutions for a generalized Korteweg–de Vries–Burgers equation,” Russ. J. Math. Phys. 29 (3), 342–357 (2022).

    Article  MathSciNet  Google Scholar 

  9. A. P. Chugainova and V. A. Shargatov, “Stability of nonstationary solutions of the generalized KdV–Burgers equation,” Comput. Math. Math. Phys. 55 (2), 251–263 (2015) [transl. from Zh. Vychisl. Mat. Mat. Fiz. 55 (2), 253–266 (2015)].

    Article  MathSciNet  Google Scholar 

  10. A. P. Chugainova and V. A. Shargatov, “Traveling waves and undercompressive shocks in solutions of the generalized Korteweg–de Vries–Burgers equation with a time-dependent dissipation coefficient distribution,” Eur. Phys. J. Plus 135 (8), 635 (2020).

    Article  Google Scholar 

  11. G. A. El, M. A. Hoefer, and M. Shearer, “Dispersive and diffusive–dispersive shock waves for nonconvex conservation laws,” SIAM Rev. 59 (1), 3–61 (2017).

    Article  MathSciNet  Google Scholar 

  12. I. M. Gel’fand, “Some problems in the theory of quasilinear equations,” Am. Math. Soc. Transl., Ser. 2, 29, 295–381 (1963) [transl. from Usp. Mat. Nauk 14 (2), 87–158 (1959)].

    MathSciNet  Google Scholar 

  13. H. Grad and P. N. Hu, “Unified shock profile in a plasma,” Phys. Fluids 10 (12), 2596–2602 (1967).

    Article  Google Scholar 

  14. B. Hayes and M. Shearer, “Undercompressive shocks and Riemann problems for scalar conservation laws with non-convex fluxes,” Proc. R. Soc. Edinburgh A 129 (4), 733–754 (1999).

    Article  MathSciNet  Google Scholar 

  15. B. T. Hayes and M. Shearer, “A nonconvex scalar conservation law with trilinear flux,” Q. Appl. Math. 59 (4), 615–635 (2001).

    Article  MathSciNet  Google Scholar 

  16. A. P. Il’Ichev and A. T. Chugainova, “Spectral stability theory of heteroclinic solutions to the Korteweg–de Vries–Burgers equation with an arbitrary potential,” Proc. Steklov Inst. Math. 295, 148–157 (2016) [transl. from Tr. Mat. Inst. Steklova 295, 163–173 (2016)].

    Article  MathSciNet  Google Scholar 

  17. A. T. Il’ichev, A. P. Chugainova, and V. A. Shargatov, “Spectral stability of special discontinuities,” Dokl. Math. 91 (3), 347–351 (2015) [transl. from Dokl. Akad. Nauk 462 (5), 512–516 (2015)].

    Article  MathSciNet  Google Scholar 

  18. D. Jacobs, B. McKinney, and M. Shearer, “Travelling wave solutions of the modified Korteweg–de Vries–Burgers equation,” J. Diff. Eqns. 116 (2), 448–467 (1995).

    Article  MathSciNet  Google Scholar 

  19. R. S. Johnson, “A non-linear equation incorporating damping and dispersion,” J. Fluid Mech. 42 (1), 49–60 (1970).

    Article  MathSciNet  Google Scholar 

  20. A. G. Kulikovskii, “A possible effect of oscillations in the structure of a discontinuity on the set of admissible discontinuities,” Sov. Phys., Dokl. 29 (4), 283–285 (1984) [transl. from Dokl. Akad. Nauk SSSR 275 (6), 1349–1352 (1984)].

    Google Scholar 

  21. A. G. Kulikovskii, “Strong discontinuities in flows of continuous media, and their structure,” Proc. Steklov Inst. Math. 182, 285–317 (1990) [transl. from Tr. Mat. Inst. Steklova 182, 261–291 (1988)].

    Google Scholar 

  22. A. G. Kulikovskii and A. P. Chugainova, “Simulation of the influence of small-scale dispersion processes in a continuum on the formation of large-scale phenomena,” Comput. Math. Math. Phys. 44 (6), 1062–1068 (2004) [transl. from Zh. Vychisl. Mat. Mat. Fiz. 44 (6), 1119–1126 (2004)].

    MathSciNet  Google Scholar 

  23. A. G. Kulikovskii and A. P. Chugainova, “Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory,” Russ. Math. Surv. 63 (2), 283–350 (2008) [transl. from Usp. Mat. Nauk 63 (2), 85–152 (2008)].

    Article  Google Scholar 

  24. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Chapman & Hall/CRC, Boca Raton, FL, 2001), Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. 118 [transl. from Russian (Fizmatlit, Moscow, 2001)].

    Google Scholar 

  25. P. D. Lax, “Hyperbolic systems of conservation laws. II,” Commun. Pure Appl. Math. 10 (4), 537–566 (1957).

    Article  MathSciNet  Google Scholar 

  26. P. G. LeFloch, Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves (Birkhäuser, Basel, 2002).

    Book  Google Scholar 

  27. P. G. LeFloch and M. Shearer, “Nonclassical Riemann solvers with nucleation,” Proc. R. Soc. Edinburgh A 134 (5), 961–984 (2004).

    Article  Google Scholar 

  28. V. Yu. Liapidevskii and V. M. Teshukov, Mathematical Models of Long Wave Propagation in Inhomogeneous Fluid (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2000) [in Russian].

    Google Scholar 

  29. R. L. Pego, P. Smereka, and M. I. Weinstein, “Oscillatory instability of traveling waves for a KdV–Burgers equation,” Physica D 67 (1–3), 45–65 (1993).

    Article  MathSciNet  Google Scholar 

  30. R. L. Pego and M. I. Weinstein, “Eigenvalues, and instabilities of solitary waves,” Philos. Trans. R. Soc. London A 340 (1656), 47–94 (1992).

    Article  MathSciNet  Google Scholar 

  31. B. L. Rozhdestvenskii, “Discontinuous solutions of hyperbolic systems of quasilinear equations,” Russ. Math. Surv. 15 (6), 53–111 (1960) [transl. from Usp. Mat. Nauk 15 (6), 59–117 (1960)].

    Article  MathSciNet  Google Scholar 

  32. A. V. Samokhin, “Reflection and refraction of solitons by the KdV–Burgers equation in nonhomogeneous dissipative media,” Theor. Math. Phys. 197 (1), 1527–1533 (2018) [transl. from Teor. Mat. Fiz. 197 (1), 153–160 (2018)].

    Article  Google Scholar 

  33. A. Samokhin, “The KdV soliton crosses a dissipative and dispersive border,” Diff. Geom. Appl. 75, 101723 (2021).

    Article  MathSciNet  Google Scholar 

  34. V. A. Shargatov and A. P. Chugainova, “Stability analysis of traveling wave solutions of a generalized Korteweg–de Vries–Burgers equation with variable dissipation parameter,” J. Comput. Appl. Math. 397, 113654 (2021).

    Article  MathSciNet  Google Scholar 

  35. V. A. Shargatov, A. P. Chugainova, and G. V. Kolomiytsev, “Global stability of traveling wave solutions of generalized Korteweg–de Vries–Burgers equation with non-constant dissipation parameter,” J. Comput. Appl. Math. 412, 114354 (2022).

    Article  Google Scholar 

Download references

Funding

This work is supported by the Russian Foundation for Basic Research, project no. 20-01-00071.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Shargatov or A. P. Chugainova.

Additional information

Translated from Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2023, Vol. 322, pp. 266–281 https://doi.org/10.4213/tm4314.

Translated by K. Shubik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shargatov, V.A., Chugainova, A.P. & Tomasheva, A.M. Structures of Classical and Special Discontinuities for the Generalized Korteweg–de Vries–Burgers Equation in the Case of a Flux Function with Four Inflection Points. Proc. Steklov Inst. Math. 322, 257–272 (2023). https://doi.org/10.1134/S0081543823040211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543823040211

Keywords

Navigation