Skip to main content
Log in

A Topological–Analytical Method for Proving Averaging Theorems on an Infinite Time Interval in a Degenerate Case

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We present a topological–analytical method for proving some results of the N. N. Bogolyubov averaging method for the case of an infinite time interval. The essence of the method is to combine topological methods of proving the existence of a periodic solution applied to the averaged system with Bogolyubov’s theorem on the averaging on a finite time interval. The proposed approach allows us to dispense with the nondegeneracy condition for the Jacobi matrix from the classical theorems of the averaging method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

References

  1. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (Springer, Berlin, 2006), Encycl. Math. Sci. 3 [transl. from Russian (URSS, Moscow, 2002)].

    Google Scholar 

  2. N. N. Bogolyubov, On Some Statistical Methods in Mathematical Physics (Akad. Nauk Ukr. SSR, Kiev, 1945) [in Russian].

    Google Scholar 

  3. N. N. Bogolyubov, “Perturbation theory in nonlinear mechanics,” in Collected Papers Inst. Struct. Mech., Acad. Sci. Ukr. SSR (Akad. Nauk Ukr. SSR, Kiev, 1950), Vol. 14, pp. 9–34 [in Russian].

    Google Scholar 

  4. N. N. Bogoliubov and Yu. A. Mitropolski, Asymptotic Methods in the Theory of Non-Linear Oscillations, 3rd ed. (Nauka, Moscow, 1963). Engl. transl. of the 2nd ed.: Asymptotic Methods in the Theory of Non-Linear Oscillations (Gordon and Breach, New York, 1961).

    Book  Google Scholar 

  5. V. Burd, Method of Averaging for Differential Equations on an Infinite Interval: Theory and Applications (Chapman and Hall/CRC, Boca Raton, FL, 2007), Lect. Notes Pure Appl. Math. 255.

    Book  Google Scholar 

  6. M. W. Hirsch, Differential Topology (Springer, New York, 2012), Grad. Texts Math. 33.

    Google Scholar 

  7. P. L. Kapitsa, “Dynamic stability of the pendulum when the point of suspension is oscillating,” Zh. Eksp. Teor. Fiz. 21 (5), 588–597 (1951).

    MathSciNet  Google Scholar 

  8. N. N. Krasovskii, Stability of Motion: Applications of Lyapunov’s Second Method to Differential Systems and Equations with Delay (Stanford Univ. Press, Stanford, CA, 1963) [transl. from Some Problems of the Motion Stability Theory (Fizmatgiz, Moscow, 1959)].

    Google Scholar 

  9. J. A. Murdock, Perturbations: Theory and Methods (SIAM, Philadelphia, PA, 1999), Class. Appl. Math. 27.

    Book  Google Scholar 

  10. A. H. Nayfeh, Perturbation Methods (Wiley-VCH, Weinheim, 2008).

    Google Scholar 

  11. I. Polekhin, “Topological considerations and the method of averaging: A connection between local and global results,” in Int. Conf. Nonlinearity, Information and Robotics (NIR), Innopolis, 2020 (IEEE, 2020), pp. 124–127.

    Google Scholar 

  12. I. Yu. Polekhin, “The method of averaging for the Kapitza–Whitney pendulum,” Regul. Chaotic Dyn. 25 (4), 401–410 (2020).

    Article  MathSciNet  Google Scholar 

  13. I. Yu. Polekhin, “The spherical Kapitza–Whitney pendulum,” Regul. Chaotic Dyn. 27 (1), 65–76 (2022).

    Article  MathSciNet  Google Scholar 

  14. J. A. Sanders, F. Verhulst, and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems (Springer, New York, 2007), Appl. Math. Sci. 59.

    Google Scholar 

  15. R. Srzednicki, “Periodic and bounded solutions in blocks for time-periodic nonautonomous ordinary differential equations,” Nonlinear Anal. Theory Methods Appl. 22 (6), 707–737 (1994).

    Article  MathSciNet  Google Scholar 

  16. R. Srzednicki, “Wazewski method and Conley index,” in Handbook of Differential Equations: Ordinary Differential Equations (Elsevier, Amsterdam, 2004), Vol. 1, pp. 591–684.

    Chapter  Google Scholar 

  17. F. W. Wilson Jr., “The structure of the level surfaces of a Lyapunov function,” J. Diff. Eqns. 3, 323–329 (1967).

    Article  MathSciNet  Google Scholar 

  18. V. F. Zhuravlev and D. M. Klimov, Applied Methods in Oscillation Theory (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation under grant no. 21-71-30011, https://rscf.ru/project/21-71-30011/, and performed at the P. G. Demidov Yaroslavl State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Yu. Polekhin.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2023, Vol. 322, pp. 195–205 https://doi.org/10.4213/tm4345.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polekhin, I.Y. A Topological–Analytical Method for Proving Averaging Theorems on an Infinite Time Interval in a Degenerate Case. Proc. Steklov Inst. Math. 322, 188–197 (2023). https://doi.org/10.1134/S0081543823040168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543823040168

Keywords

Navigation