Skip to main content
Log in

Some Controllable and Uncontrollable Degenerate Four-Level Quantum Systems

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We analyze the controllability of three quantum systems that belong to a specific class of four-level quantum systems with twice degenerate highest excited energy level and with forbidden transition between the two remaining non-degenerate levels. For this purpose we perform numerical computation, construct the dynamical Lie algebras generated by all commutators of the free and interaction Hamiltonians, and show that two quantum systems are irreducible and controllable while the third system is reducible and hence uncontrollable. The reducibility and uncontrollability are proved by constructing a conserved Hermitian operator (physical quantity). The controllability is proved by constructing the dynamical Lie algebra and showing that it has maximal rank. These findings indicate that depending on the values of certain particular matrix entries of the interaction Hamiltonian, quantum systems in the class under consideration can be either uncontrollable or controllable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

References

  1. F. Albertini and D. D’Alessandro, “Notions of controllability for quantum mechanical systems,” in Proc. 40th IEEE Conf. on Decision and Control, Orlando, 2001 (IEEE, 2001), Vol. 2, pp. 1589–1594.

    Google Scholar 

  2. C. Altafini, “Controllability of quantum mechanical systems by root space decomposition of \(\mathfrak {su}(N)\),” J. Math. Phys. 43 (5), 2051–2062 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Altafini, “Controllability properties for finite dimensional quantum Markovian master equations,” J. Math. Phys. 44 (6), 2357–2372 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. M. Bloch, R. W. Brockett, and C. Rangan, “Finite controllability of infinite-dimensional quantum systems,” IEEE Trans. Autom. Control 55 (8), 1797–1805 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  5. U. Boscain, J.-P. Gauthier, F. Rossi, and M. Sigalotti, “Approximate controllability, exact controllability, and conical eigenvalue intersections for quantum mechanical systems,” Commun. Math. Phys. 333 (3), 1225–1239 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Ciaramella and A. Borzì, “Quantum optimal control problems with a sparsity cost functional,” Numer. Funct. Anal. Optim. 37 (8), 938–965 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  7. D. D’Alessandro, “Topological properties of reachable sets and the control of quantum bits,” Syst. Control Lett. 41 (3), 213–221 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  8. P. de Fouquieres and S. G. Schirmer, “A closer look at quantum control landscapes and their implication for control optimization,” Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16 (3), 1350021 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Fu, S. G. Schirmer, and A. I. Solomon, “Complete controllability of finite-level quantum systems,” J. Phys. A: Math. Gen. 34 (8), 1679–1690 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  10. G. M. Huang, T. J. Tarn, and J. W. Clark, “On the controllability of quantum-mechanical systems,” J. Math. Phys. 24, 2608–2618 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Jurdjevic and H. J. Sussmann, “Control systems on Lie groups,” J. Diff. Eqns. 12 (2), 313–329 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  12. C. P. Koch et al., “Quantum optimal control in quantum technologies: Strategic report on current status, visions and goals for research in Europe,” EPJ Quantum Technol. 9 (19), doi: 10.1140/epjqt/s40507-022-00138-x (2022).

    Google Scholar 

  13. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Dover Publ., Mineola, NY, 1999) [transl. from Russian (Nauka, Moscow, 1981)].

    Google Scholar 

  14. C. H. Lan, T. J. Tarn, Q.-S. Chi, and J. W. Clark, “Analytic controllability of time-dependent quantum control systems,” J. Math. Phys. 46 (5), 052102 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Lokutsievskiy and A. Pechen, “Reachable sets for two-level open quantum systems driven by coherent and incoherent controls,” J. Phys. A: Math. Theor. 54 (39), 395304 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Lyakhov, H.-J. Lee, and A. Pechen, “Some features of boron isotopes separation by the laser-assisted retardation of condensation method in multipass irradiation cell implemented as a resonator,” IEEE J. Quantum Electron. 52 (12), 1400208 (2016).

    Article  Google Scholar 

  17. K. A. Lyakhov, H. J. Lee, and A. N. Pechen, “Some issues of industrial scale boron isotopes separation by the laser assisted retarded condensation (SILARC) method,” Separ. Purif. Technol. 176 (4), 402–411 (2017).

    Article  Google Scholar 

  18. K. A. Lyakhov and A. N. Pechen, “Enrichment factor for molybdenum isotopes separation by the method of laser-assisted retardation of condensation,” Lobachevskii J. Math. 42 (10), 2392–2400 (2021).

    Article  MATH  Google Scholar 

  19. Q. P. Minh and H. Rabitz, “Learning control of quantum-mechanical systems by laboratory identification of effective input–output maps,” Chem. Phys. 217 (2–3), 389–400 (1997).

    Google Scholar 

  20. K. W. Moore, A. Pechen, X.-J. Feng, J. Dominy, V. Beltrani, and H. Rabitz, “Universal characteristics of chemical synthesis and property optimization,” Chem. Sci. 2 (3), 417–424 (2011).

    Article  Google Scholar 

  21. K. W. Moore, A. Pechen, X.-J. Feng, J. Dominy, V. J. Beltrani, and H. Rabitz, “Why is chemical synthesis and property optimization easier than expected?,” Phys. Chem. Chem. Phys. 13 (21), 10048–10070 (2011).

    Article  Google Scholar 

  22. O. V. Morzhin and A. N. Pechen, “Machine learning for finding suboptimal final times and coherent and incoherent controls for an open two-level quantum system,” Lobachevskii J. Math. 41 (12), 2353–2368 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  23. O. V. Morzhin and A. N. Pechen, “Generation of density matrices for two qubits using coherent and incoherent controls,” Lobachevskii J. Math. 42 (10), 2401–2412 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  24. O. V. Morzhin and A. N. Pechen, “Numerical estimation of reachable and controllability sets for a two-level open quantum system driven by coherent and incoherent controls,” AIP Conf. Proc. 2362, 060003 (2021).

    Article  Google Scholar 

  25. A. Oza, A. Pechen, J. Dominy, V. Beltrani, K. Moore, and H. Rabitz, “Optimization search effort over the control landscapes for open quantum systems with Kraus-map evolution,” J. Phys. A: Math. Theor. 42 (20), 205305 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Pechen, “Engineering arbitrary pure and mixed quantum states,” Phys. Rev. A 84 (4), 042106 (2011).

    Article  Google Scholar 

  27. A. Pechen, D. Prokhorenko, R. Wu, and H. Rabitz, “Control landscapes for two-level open quantum systems,” J. Phys. A: Math. Theor. 41 (4), 045205 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  28. A. N. Pechen and D. J. Tannor, “Are there traps in quantum control landscapes?,” Phys. Rev. Lett. 106 (12), 120402 (2011).

    Article  Google Scholar 

  29. A. N. Pechen and D. J. Tannor, “Reply,” Phys. Rev. Lett. 108 (19), 198902 (2012).

    Article  Google Scholar 

  30. A. N. Pechen and D. J. Tannor, “Quantum control landscape for a \(\Lambda \)-atom in the vicinity of second-order traps,” Isr. J. Chem. 52 (5), 467–472 (2012).

    Article  Google Scholar 

  31. W. Pfeifer, The Lie Algebras \(\,su(N)\): An Introduction (Birkhäuser, Basel, 2003).

    Book  MATH  Google Scholar 

  32. T. Polack, H. Suchowski, and D. J. Tannor, “Uncontrollable quantum systems: A classification scheme based on Lie subalgebras,” Phys. Rev. A 79 (5), 053403 (2009).

    Article  Google Scholar 

  33. V. Ramakrishna, M. V. Salapaka, M. Dahleh, H. Rabitz, and A. Peirce, “Controllability of molecular systems,” Phys. Rev. A 51 (2), 960–966 (1995).

    Article  Google Scholar 

  34. S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics (J. Wiley & Sons, New York, 2000).

    Google Scholar 

  35. Yu. L. Sachkov, “Controllability of invariant systems on Lie groups and homogeneous spaces,” J. Math. Sci. 100 (4), 2355–2427 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  36. Yu. L. Sachkov, “Left-invariant optimal control problems on Lie groups: Classification and problems integrable by elementary functions,” Russ. Math. Surv. 77 (1), 99–163 (2022) [transl. from Usp. Mat. Nauk 77 (1), 109–176 (2022)].

    Article  MathSciNet  MATH  Google Scholar 

  37. S. G. Schirmer, H. Fu, and A. I. Solomon, “Complete controllability of quantum systems,” Phys. Rev. A 63 (6), 063410 (2001).

    Article  Google Scholar 

  38. S. G. Schirmer, A. I. Solomon, and J. V. Leahy, “Criteria for reachability of quantum states,” J. Phys. A: Math. Gen. 35 (40), 8551–8562 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  39. S. G. Schirmer, A. I. Solomon, and J. V. Leahy, “Degrees of controllability for quantum systems and application to atomic systems,” J. Phys. A: Math. Gen. 35 (18), 4125–4141 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Shapiro and P. Brumer, Quantum Control of Molecular Processes, 2nd ed. (Wiley-VCH, Weinheim, 2012).

    MATH  Google Scholar 

  41. T. J. Tarn, J. W. Clark, and G. M. Huang, “Analytic controllability of quantum-mechanical systems,” in Mathematical Theory of Networks and Systems: Proc. Int. Symp., Beer Sheva, 1983 (Springer, Berlin, 1984), Lect. Notes Control Inf. Sci. 58, pp. 840–855.

    Chapter  Google Scholar 

  42. G. Turinici and H. Rabitz, “Quantum wavefunction controllability,” Chem. Phys. 267 (1–3), 1–9 (2001).

    Article  MATH  Google Scholar 

  43. B. O. Volkov, O. V. Morzhin, and A. N. Pechen, “Quantum control landscape for ultrafast generation of single-qubit phase shift quantum gates,” J. Phys. A: Math. Theor. 54 (21), 215303 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  44. B. O. Volkov and A. N. Pechen, “Higher order traps in quantum control landscapes,” in International Conference on Differential Equations and Dynamical Systems: Abstracts, Suzdal, 2022 (Arkaim, Vladimir, 2022), pp. 74–75.

    Google Scholar 

  45. J. Wu, R. Wu, J. Zhang, and C. Li, “Controllability of quantum systems with \(SU(1,1)\) dynamical symmetry,” J. Syst. Sci. Complex. 34 (3), 827–842 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  46. R. Wu, A. Pechen, H. Rabitz, M. Hsieh, and B. Tsou, “Control landscapes for observable preparation with open quantum systems,” J. Math. Phys. 49 (2), 022108 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  47. R. Zeier and T. Schulte-Herbrüggen, “Symmetry principles in quantum systems theory,” J. Math. Phys. 52 (11), 113510 (2011).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation under grant no. 22-11-00330, https://rscf.ru/project/22-11-00330/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander N. Pechen.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2023, Vol. 321, pp. 237–251 https://doi.org/10.4213/tm4321.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myachkova, A.A., Pechen, A.N. Some Controllable and Uncontrollable Degenerate Four-Level Quantum Systems. Proc. Steklov Inst. Math. 321, 222–235 (2023). https://doi.org/10.1134/S0081543823020165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543823020165

Navigation