Skip to main content
Log in

The Method of Quasi-Solutions Based on Barrier Functions in the Analysis of Improper Convex Programs

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The paper is devoted to the construction of possible approximations for improper convex programs based on the application of a classical approach to the regularization of ill-posed extremal problems, namely V. K. Ivanov’s method of quasi-solutions. While usually the constraints of the original problem in the method of quasi-solutions are aggregated with the help of exterior penalty functions, here we use for this purpose a generalized inverse barrier function, which is a modification of interior penalty. Due to the specifics of the problem, we introduce a number of new control parameters into the minimized barrier function. Along with the penalty coefficients and the regularization parameter, we consider parameters that ensure the correctness of the application of the barrier method, first of all, the existence of interior points in the domain of the method. We also discuss the existence of solutions to the resulting correction problems and analyze the influence of the parameters of the barrier function on the convergence of the proposed modification of the method of quasi-solutions for improper problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. I. I. Eremin, Vl. D. Mazurov, and N. N. Astaf’ev, Improper Problems of Linear and Convex Programming (Nauka, Moscow, 1983) [in Russian].

    MATH  Google Scholar 

  2. A. N. Tikhonov and V. Ya. Arsenin, Solutions of Ill-Posed Problems (Nauka, Moscow, 1979; Wiley, New York, 1981).

    MATH  Google Scholar 

  3. F. P. Vasil’ev, Optimization Methods (MTsNMO, Moscow, 2011), Vols. 1, 2 [in Russian].

    Google Scholar 

  4. I. I. Eremin and N. N. Astaf’ev, Introduction to the Theory of Linear and Convex Programming (Nauka, Moscow, 1976) [in Russian].

    MATH  Google Scholar 

  5. A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques (Wiley, New York, 1968; Mir, Moscow, 1972).

    MATH  Google Scholar 

  6. Yu. G. Evtushenko, Methods for Solving Extremal Problems and Their Application in Optimization Systems (Nauka, Moscow, 1982) [in Russian].

    MATH  Google Scholar 

  7. K.-H. Elster, R. Reinhardt, M. Schauble, and G. Donath, Einfuhrung in die Nichtlineare Optimierung (Teubner, Leipzig, 1977; Nauka, Moscow, 1985).

    MATH  Google Scholar 

  8. P. E. Gill, W. Murray, M. S. Sunders, J. A. Tomlin, and M. H. Wright, “On projected Newton barrier methods for linear programming and an equivalence to Karmarkar’s projected methods,” Math. Prog. 36 (2), 183–209 (1986). https://doi.org/10.1007/BF02592025

    Article  MATH  Google Scholar 

  9. V. D. Skarin, “Barrier function method and correction algorithms for improper convex programming problems,” Proc. Steklov Inst. Math. 263 (Suppl. 2), S120–S134 (2008). https://doi.org/10.1134/S0081543808060126

    Article  MathSciNet  MATH  Google Scholar 

  10. L. D. Popov, “Use of barrier functions for optimal correction of improper problems of linear programming of the 1st kind,” Autom. Remote Control 73 (3), 417–424 (2012). https://doi.org/10.1134/S0005117912030010

    Article  MathSciNet  MATH  Google Scholar 

  11. V. D. Skarin, “On some universal methods of correction of the improper convex programming problems,” Autom. Remote Control 73 (2), 300–309 (2012). https://doi.org/10.1134/S0005117912020087

    Article  MathSciNet  MATH  Google Scholar 

  12. L. D. Popov and V. D. Skarin, “Lexicographic regularization and duality for improper linear programming problems,” Proc. Steklov Inst. Math. 295 (Suppl. 1), S131–S144 (2016). https://doi.org/10.1134/S0081543816090145

    Article  MATH  Google Scholar 

  13. V. Skarin, “On parameter control of the residual method for the correction of improper problems,” in Discrete Optimization and Operations Research: Proceedings of the 9th International Conference, Vladivostok, Russia, 2016 (Springer, Cham, 2016), Ser. Lecture Notes in Computer Science 9869, pp. 441–451.

    Google Scholar 

  14. V. V. Volkov, V. I. Erokhin, A. S. Krasnikov, A. V. Razumov, and M. N. Khvostov, “Minimum-Euclidean-norm matrix correction for a pair of dual linear programming problems,” Comput. Math. Math. Phys. 57 (11), 1757–1770 (2017). https://doi.org/10.1134/S0965542517110148

    Article  MathSciNet  MATH  Google Scholar 

  15. O. V. Murav’eva, “Determination of consistency and inconsistency radii for systems of linear equations and inequalities using the matrix \(l_{1}\) norm,” Comput. Math. Math. Phys. 58 (6), 840–849 (2018). https://doi.org/10.1134/S0965542518060106

    Article  MathSciNet  MATH  Google Scholar 

  16. F. P. Vasil’ev, M. M. Potapov, L. A. Artem’eva, “Extragradient method for correction of inconsistent linear programming problems,” Comput. Math. Math. Phys. 58 (12), 1919–1925 (2018). https://doi.org/10.1134/S0965542518120163

    Article  MathSciNet  MATH  Google Scholar 

  17. G. N. Golub, P. C. Hansen, and D. P. O’Leary, “Tikhonov regularization and total least squares,” SIAM J. Matrix Anal. Appl. 21 (1), 185–194 (1999). https://doi.org/10.1137/S0895479897326432

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Renaut and N. Guo, “Efficient algorithms for solution of regularized total least squares,” SIAM J. Matrix Anal. Appl. 26 (2), 457–476 (2005). https://doi.org/10.1137/S0895479802419889

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Skarin.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated from Trudy Instituta Matematiki i Mekhaniki UrO RAN, Vol. 28, No. 4, pp. 201 - 215, 2022 https://doi.org/10.21538/0134-4889-2022-28-4-201-215.

Translated by E. Vasil’eva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skarin, V.D. The Method of Quasi-Solutions Based on Barrier Functions in the Analysis of Improper Convex Programs. Proc. Steklov Inst. Math. 319 (Suppl 1), S242–S256 (2022). https://doi.org/10.1134/S0081543822060219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543822060219

Keywords

Navigation