Skip to main content
Log in

Dirichlet Series with Periodic Coefficients and Their Value-Distribution near the Critical Line

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The class of Dirichlet series associated with a periodic arithmetical function \(f\) includes the Riemann zeta-function as well as Dirichlet \(L\)-functions to residue class characters. We study the value-distribution of these Dirichlet series \(L(s;f)\) and their analytic continuation in the neighbourhood of the critical line (which is the axis of symmetry of the related Riemann-type functional equation). In particular, for a fixed complex number \(a\neq 0\), we find for an even or odd periodic \(f\) the number of \(a\)-points of the \(\Delta\)-factor of the functional equation, prove the existence of the mean of the values of \(L(s;f)\) taken at these points, show that the ordinates of these \(a\)-points are uniformly distributed modulo one and apply this to show a discrete universality theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. M. Apostol, “Dirichlet \(L\)-functions and primitive characters,” Proc. Am. Math. Soc. 31, 384–386 (1972).

    MathSciNet  MATH  Google Scholar 

  2. B. Bagchi, “The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series,” PhD Thesis (Indian Stat. Inst., Calcutta, 1981).

    Google Scholar 

  3. R. B. Burckel, An Introduction to Classical Complex Analysis (Birkhäuser, Basel, 1979), Vol. 1.

    Book  MATH  Google Scholar 

  4. T. Christ, “Value-distribution of the Riemann zeta-function and related functions near the critical line,” PhD Thesis (Würzburg Univ., Würzburg, 2014); arxiv: 1405.1553 [math.NT].

    Google Scholar 

  5. P. D. T. A. Elliott, “The Riemann zeta function and coin tossing,” J. Reine Angew. Math. 254, 100–109 (1972).

    MathSciNet  MATH  Google Scholar 

  6. S. M. Gonek, “Analytic properties of zeta and \(L\)-functions,” PhD Thesis (Univ. Michigan, Ann Arbor, 1979).

    Google Scholar 

  7. S. M. Gonek, “Mean values of the Riemann zeta-function and its derivatives,” Invent. Math. 75, 123–141 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. M. Gonek, “An explicit formula of Landau and its applications to the theory of the zeta-function,” in A tribute to Emil Grosswald: Number Theory and Related Analysis (Am. Math. Soc., Providence, RI, 1993), Contemp. Math. 143, pp. 395–413.

    Chapter  Google Scholar 

  9. J.-P. Gram, “Note sur les zéros de la fonction \(\zeta (s)\) de Riemann,” Acta Math. 27, 289–304 (1903).

    Article  MathSciNet  MATH  Google Scholar 

  10. W. K. Hayman, Meromorphic Functions (Clarendon Press, Oxford, 1964).

    MATH  Google Scholar 

  11. E. Hlawka, “Über die Gleichverteilung gewisser Folgen, welche mit den Nullstellen der Zetafunktion zusammenhängen,” Österr. Akad. Wiss., Math.-naturw. Kl., S.-Ber., Abt. II, 184, 459–471 (1975).

    MathSciNet  MATH  Google Scholar 

  12. G. Julia, “Sur quelques propriétés nouvelles des fonctions entières ou méromorphes (premier mémoire),” Ann. Sci. Éc. Norm. Supér., Sér. 3, 36, 93–125 (1919).

    Google Scholar 

  13. J. Kaczorowski, “Some remarks on the universality of periodic \(L\)-functions,” in New Directions in Value-Distribution Theory of Zeta and L-Functions: Proc. Conf., Würzburg, 2008, Ed. by R. Steuding and J. Steuding (Shaker Verlag, Aachen, 2009), pp. 113–120.

    Google Scholar 

  14. J. Kalpokas, M. A. Korolev, and J. Steuding, “Negative values of the Riemann zeta function on the critical line,” Mathematika 59 (2), 443–462 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Kalpokas and J. Steuding, “On the value-distribution of the Riemann zeta-function on the critical line,” Moscow J. Comb. Number Theory 1 (1), 26–42 (2011).

    MathSciNet  MATH  Google Scholar 

  16. M. A. Korolev, “Gram’s law in the theory of the Riemann zeta-function. Part 1,” Proc. Steklov Inst. Math. 292 (Suppl. 2), 1–146 (2016) [transl. from Sovrem. Probl. Mat. 20, 3–161 (2015)].

    MathSciNet  MATH  Google Scholar 

  17. M. Korolev and A. Laurinčikas, “A new application of the Gram points,” Aequationes Math. 93 (5), 859–873 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences (Dover Publ., Mineola, NY, 2006).

    MATH  Google Scholar 

  19. E. Landau, “Über die Nullstellen der Zetafunktion,” Math. Ann. 71, 548–564 (1912).

    Article  MathSciNet  MATH  Google Scholar 

  20. N. Levinson, “Almost all roots of \(\zeta (s)=a\) are arbitrarily close to \(\sigma =1/2\),” Proc. Natl. Acad. Sci. USA 72 (4), 1322–1324 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Muth and J. Steuding, “Joint value-distribution of Dirichlet series associated with periodic arithmetical functions,” Funct. Approx., Comment. Math. 62 (1), 63–79 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  22. É. Picard, “Sur les fonctions analytiques uniformes dans le voisinage d’un point singulier essentiel,” C. R. Acad. Sci. Paris 89, 745–747 (1879).

    MATH  Google Scholar 

  23. H. A. Rademacher, “Fourier analysis in number theory,” in Collected Papers of Hans Rademacher (MIT Press, Cambridge, 1974), Vol. II, pp. 434–458.

    MATH  Google Scholar 

  24. V. V. Rane, “On an approximate functional equation for Dirichlet \(L\)-series,” Math. Ann. 264, 137–145 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Reich, “Werteverteilung von Zetafunktionen,” Arch. Math. 34, 440–451 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Sander and J. Steuding, “Joint universality for sums and products of Dirichlet \(L\)-functions,” Analysis (München) 26 (3), 295–312 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  27. W. Schnee, “Die Funktionalgleichung der Zetafunktion und der Dirichletschen Reihen mit periodischen Koeffizienten,” Math. Z. 31, 378–390 (1930).

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Sourmelidis, “Universality and hypertranscendence of zeta-functions,” PhD Thesis (Würzburg Univ., Würzburg, 2020).

    MATH  Google Scholar 

  29. R. Spira, “An inequality for the Riemann zeta function,” Duke Math. J. 32, 247–250 (1965).

    MathSciNet  MATH  Google Scholar 

  30. E. M. Stein and R. Shakarchi, Complex Analysis (Princeton Univ. Press, Princeton, NJ, 2003).

    MATH  Google Scholar 

  31. J. Steuding, “Dirichlet series associated to periodic arithmetic functions and the zeros of Dirichlet \(L\)-functions,” in Analytic and Probabilistic Methods in Number Theory: Proc. 3rd Int. Conf. in Honour of J. Kubilius, Palanga, 2001, Ed. by A. Dubickas et al. (TEV, Vilnius, 2002), pp. 282–296.

    Google Scholar 

  32. J. Steuding, Value-Distribution of \(L\)-Functions (Springer, Berlin, 2007), Lect. Notes Math. 1877.

    MATH  Google Scholar 

  33. J. Steuding, “The roots of the equation \(\zeta (s)=a\) are uniformly distributed modulo one,” in Analytic and Probabilistic Methods in Number Theory: Proc. 5th Int. Conf. in Honour of J. Kubilius, Palanga, 2011, Ed. by A. Laurinčikas et al. (TEV, Vilnius, 2012), pp. 243–249.

    Google Scholar 

  34. J. Steuding, “One hundred years uniform distribution modulo one and recent applications to Riemann’s zeta-function,” in Topics in Mathematical Analysis and Applications, Ed. by Th. M. Rassias and L. Tóth (Springer, Cham, 2014), Springer Optim. Appl. 94, pp. 659–698.

    Chapter  MATH  Google Scholar 

  35. J. Steuding and A. I. Suriajaya, “Value-distribution of the Riemann zeta-function along its Julia lines,” Comput. Methods Funct. Theory 20 (3–4), 389–401 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  36. E. C. Titchmarsh, The Theory of Functions, 2nd ed. (Oxford Univ. Press, Oxford, 1939).

    MATH  Google Scholar 

  37. E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., rev. by D. R. Heath-Brown (Clarendon Press, Oxford, 1986).

    MATH  Google Scholar 

  38. I. M. Vinogradov, “A new estimation of a certain sum containing primes,” Mat. Sb. 2 (5), 783–792 (1937).

    MATH  Google Scholar 

  39. I. M. Vinogradov, “A new estimate for the function \(\zeta (1+it)\),” Izv. Akad. Nauk SSSR, Ser. Mat. 22, 161–164 (1958).

    MathSciNet  Google Scholar 

  40. S. M. Voronin, “Theorem on the ‘universality’ of the Riemann zeta-function,” Math. USSR, Izv. 9 (3), 443–453 (1975) [transl. from Izv. Akad. Nauk SSSR, Ser. Mat. 39 (3), 457–486 (1975)].

    Article  MathSciNet  MATH  Google Scholar 

  41. S. Voronin, “On the functional independence of Dirichlet \(L\)-functions,” Acta Arith. 27, 493–503 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  42. S. M. Voronin and A. A. Karatsuba, The Riemann Zeta-Function (Fizmatlit, Moscow, 1994); Engl. transl.: A. A. Karatsuba and S. M. Voronin, The Riemann Zeta-Function (W. de Gruyter, Berlin, 1992), De Gruyter Expo. Math. 5.

    MATH  Google Scholar 

  43. H. Weyl, “Über die Gleichverteilung von Zahlen mod. Eins,” Math. Ann. 77, 313–352 (1916).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the comments of the anonymous referee.

Funding

The first author is supported by the Austrian Science Fund, project Y-901, and the third author is supported by JSPS KAKENHI grant no. 18K13400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Sourmelidis.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Vol. 314, pp. 248–274 https://doi.org/10.4213/tm4188.

To the memory of Ivan Matveevich Vinogradov on the occasion of his 130th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sourmelidis, A., Steuding, J. & Suriajaya, A.I. Dirichlet Series with Periodic Coefficients and Their Value-Distribution near the Critical Line. Proc. Steklov Inst. Math. 314, 238–263 (2021). https://doi.org/10.1134/S0081543821040118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543821040118

Keywords

Navigation