Skip to main content
Log in

Recognition of the Sporadic Simple Groups \(Ru,\ HN,\ Fi_{22},\ He,\ M^{c}L\), and \(Co_{3}\) by Their Gruenberg–Kegel Graphs

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The Gruenberg–Kegel graph (prime graph) \(\Gamma(G)\) of a finite group \(G\) is a graph in which the vertices are the prime divisors of the order of \(G\) and two distinct vertices \(p\) and \(q\) are adjacent if and only if \(G\) contains an element of order \(pq\). The problem of recognition of finite groups by their Gruenberg–Kegel graph is of great interest in finite group theory. For a finite group \(G\), \(h_{\Gamma}(G)\) denotes the number of all pairwise nonisomorphic finite groups \(H\) such that \(\Gamma(H)=\Gamma(G)\) (if the set of such groups \(H\) is infinite, then \(h_{\Gamma}(G)=\infty\)). A group \(G\) is called \(n\)-recognizable by its Gruenberg–Kegel graph if \(h_{\Gamma}(G)=n<\infty\), recognizable by its Gruenberg–Kegel graph if \(h_{\Gamma}(G)=1\), and unrecognizable by its Gruenberg–Kegel graph if \(h_{\Gamma}(G)=\infty\). We say that the problem of recognition by the Gruenberg–Kegel graph is solved for a finite group \(G\) if the value \(h_{\Gamma}(G)\) is found. For a finite group \(G\) unrecognizable by its Gruenberg–Kegel graph, the question of the (normal) structure of finite groups having the same Gruenberg–Kegel graph as \(G\) is also of interest. In 2003, M. Hagie investigated the structure of finite groups having the same Gruenberg–Kegel graph as some sporadic simple groups. In particular, she gave first examples of finite groups recognizable by their Gruenberg–Kegel graphs; they were the sporadic simple groups \(J_{1}\), \(M_{22}\), \(M_{23}\), \(M_{24}\), and \(Co_{2}\). However, that investigation was not completed. In 2006, A.V. Zavarnitsine established that the group \(J_{4}\) is recognizable by its Gruenberg–Kegel graph. The unrecognizability of the sporadic groups \(M_{12}\) and \(J_{2}\) by their Gruenberg–Kegel graph was known previously; it follows from the unrecognizability of these groups by their spectrum. In the present paper, we continue Hagie’s study and use her results. For any sporadic simple group \(S\) isomorphic to \(Ru\), \(HN\), \(Fi_{22}\), \(He\), \(M^{c}L\), or \(Co_{3}\), we find all finite groups having the same Gruenberg–Kegel graph as \(S\). Thus, for these six groups, we complete Hagie’s investigation and, in particular, solve the problem of recognizability by the Gruenberg–Kegel graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. A. Alekseeva and A. S. Kondrat’ev, “Quasirecognition of some finite simple groups by the set of element orders,” in Proceedings of the Ukrainian Mathematical Congress, Kiev, Ukraine, 2001, Sect. 1: Algebra and Number Theory (Inst. Mat. Nats. Akad. Nauk Ukr., Kiev, 2003), p. 4.

    Google Scholar 

  2. S. Dolfi, E. Jabara, and M. S. Lucido, “\(C55\)-groups,” Sib. Math. J. 45 (6), 1053–1062 (2004).

    Article  MathSciNet  Google Scholar 

  3. A. V. Zavarnitsine, “Recognition of finite groups by the prime graph,” Algebra Logic 45 (4), 220–231 (2006).

    Article  MathSciNet  Google Scholar 

  4. A. S. Kondrat’ev, “Prime graph components of finite simple groups,” Math. USSR Sb. 67 (1), 235–247 (1990).

    Article  MathSciNet  Google Scholar 

  5. A. S. Kondrat’ev and I. V. Khramtsov, “On finite tetraprimary groups,” Proc. Steklov Inst. Math. 279, Suppl. 1, 43–61 (2012).

    Article  Google Scholar 

  6. C. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras (Wiley, New York, 1962; Nauka, Moscow, 1969).

    MATH  Google Scholar 

  7. V. D. Mazurov, “Characterizations of finite groups by sets of the orders of their elements,” Algebra and Logic 36 (1), 23–32 (1997).

    Article  MathSciNet  Google Scholar 

  8. V. D. Mazurov, “Groups with a given spectrum,” Izv. Ural’sk. Gos. Univ. 36, 119–138 (2005).

    MATH  Google Scholar 

  9. M. Aschbacher, Finite Group Theory (Cambridge Univ. Press, Cambridge, 1986).

    MATH  Google Scholar 

  10. J. N. Bray, D. F. Holt, and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups (Cambridge Univ. Press, Cambridge, 2013), London Math. Soc. Lecture Note Ser. 407. https://doi.org/10.1017/CBO9781139192576

    Book  MATH  Google Scholar 

  11. G. Chen, “A new characterization of sporadic simple groups,” Algebra Colloq. 3 (1), 49–58 (1996).

    MathSciNet  MATH  Google Scholar 

  12. The GAP Group (GAP—Groups, Algorithms, and Programming), Version 4.10.0 (2018). https://www.gap-system.org

  13. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups (Oxford Univ. Press, Oxford, 1985).

    MATH  Google Scholar 

  14. M. Hagie, “The prime graph of a sporadic simple group,” Comm. Algebra. 31 (9), 4405–4424 (2003). https://doi.org/10.1081/AGB-120022800

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Huppert and N. Blackburn, Finite Groups II (Springer, Berlin, 1982).

    Book  Google Scholar 

  16. C. Jansen, K. Lux, R. Parker, and R. Wilson, An Atlas of Brauer Characters (Clarendon, Oxford, 1995).

    MATH  Google Scholar 

  17. B. Khosravi, “Groups with the same prime graph as an almost sporadic simple group,” Acta Math. Acad. Paedagog. Nyhazi (N.S.) 25 (2), 175–187 (2009).

    MathSciNet  MATH  Google Scholar 

  18. B. Khosravi, “On the prime graphs of the automorphism groups of sporadic groups,” Arch. Math. (Brno) 45 (2), 83–94 (2009).

    MathSciNet  MATH  Google Scholar 

  19. M. S. Lucido, “Prime graph components of finite almost simple groups,” Rend. Sem. Mat. Univ. Padova 102, 1–22 (1999); 107, 189–190 (2002).

    MathSciNet  MATH  Google Scholar 

  20. V. D. Mazurov and W. J. Shi, “A note to the characterization of sporadic simple groups,” Algebra Colloq. 5 (3), 285–288 (1998).

    MathSciNet  MATH  Google Scholar 

  21. C. E. Praeger and W. J. Shi, “A characterization of some alternating and symmetric groups,” Commun. Algebra 22 (5), 1507–1530 (1994). https://doi.org/10.1080/00927879408824920

    Article  MathSciNet  MATH  Google Scholar 

  22. J. S. Williams, “Prime graph components of finite groups,” J. Algebra 69 (2), 487–513 (1981). https://doi.org/10.1016/0021-8693(81)90218-0

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kondrat’ev.

Additional information

Translated from Trudy Instituta Matematiki i Mekhaniki UrO RAN, Vol. 25, No. 4, pp. 79 - 87, 2019 https://doi.org/10.21538/0134-4889-2019-25-4-79-87.

Translated by E. Vasil’eva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrat’ev, A.S. Recognition of the Sporadic Simple Groups \(Ru,\ HN,\ Fi_{22},\ He,\ M^{c}L\), and \(Co_{3}\) by Their Gruenberg–Kegel Graphs. Proc. Steklov Inst. Math. 313 (Suppl 1), S125–S132 (2021). https://doi.org/10.1134/S0081543821030135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543821030135

Keywords

Navigation