Skip to main content
Log in

Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We establish sharp order estimates for the error of optimal cubature formulas on the Nikol’skii–Besov and Lizorkin–Triebel type spaces, \(B^{s\,\mathtt{m}}_{p\,q}(\mathbb T^m)\) and \(L^{s\,\mathtt{m}}_{p\,q}(\mathbb T^m)\), respectively, for a number of relations between the parameters \(s\), \(p\), \(q\), and \(\mathtt{m}\) (\(s=(s_1,\dots,s_n)\in\mathbb R^n_+\), \(1\leq p,q\leq\infty\), \(\mathtt{m}=(m_1,\dots,m_n)\in{\mathbb N}^n\), \(m=m_1+\dots+m_n\)). Lower estimates are proved via Bakhvalov’s method. Upper estimates are based on Frolov’s cubature formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here and below \(\sum\equiv\sum_{\xi\in{\mathbb Z}^m}\), \(\sum^\prime\equiv\sum_{\xi\in{\mathbb Z}^m\setminus\{ {\mathbf 0} \}}\), and \(\sum_{ {\mathtt{k}} }\equiv\sum_{ {\mathtt{k}} \in{\mathbb N}_0^n}\).

References

  1. N. S. Bakhvalov, “On the approximate calculation of multiple integrals,” Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., Astron., Fiz., Khim., No. 4, 3–18 (1959).

    Google Scholar 

  2. N. S. Bakhvalov, “Optimal convergence bounds for quadrature processes and integration methods of Monte Carlo type for classes of functions,” Zh. Vychisl. Mat. Mat. Fiz. 4 (4, Suppl.), 5–63 (1964).

    MathSciNet  Google Scholar 

  3. N. S. Bakhvalov, “A lower bound for the asymptotic characteristics of classes of functions with dominating mixed derivative,” Math. Notes 12 (6), 833–838 (1972) [transl. from Mat. Zametki 12 (6), 655–664 (1972)].

    Article  Google Scholar 

  4. D. B. Bazarkhanov, “Characterizations of the Nikol’skii–Besov and Lizorkin–Triebel function spaces of mixed smoothness,” Proc. Steklov Inst. Math. 243, 46–58 (2003) [transl. from Tr. Mat. Inst. Steklova 243, 53–65 (2003)].

    MATH  Google Scholar 

  5. D. B. Bazarkhanov, “Equivalent (quasi)norms for certain function spaces of generalized mixed smoothness,” Proc. Steklov Inst. Math. 248, 21–34 (2005) [transl. from Tr. Mat. Inst. Steklova 248, 26–39 (2005)].

    MATH  Google Scholar 

  6. D. B. Bazarkhanov, “Function spaces with variable mixed smoothness. I,” Mat. Zh. (Almaty) 6 (4), 32–40 (2006).

    MathSciNet  MATH  Google Scholar 

  7. D. B. Bazarkhanov, “Function spaces with variable mixed smoothness. II,” Mat. Zh. (Almaty) 7 (3), 16–27 (2007).

    MathSciNet  MATH  Google Scholar 

  8. D. B. Bazarkhanov, “Wavelet approximation and Fourier widths of classes of periodic functions of several variables. I,” Proc. Steklov Inst. Math. 269, 2–24 (2010) [transl. from Tr. Mat. Inst. Steklova 269, 8–30 (2010)].

    Article  MathSciNet  Google Scholar 

  9. D. B. Bazarkhanov, “Representations and characterizations for certain function spaces,” Mat. Zh. (Almaty) 12 (3), 43–52 (2012).

    Google Scholar 

  10. D. B. Bazarkhanov, “Nonlinear approximations of classes of periodic functions of many variables,” Proc. Steklov Inst. Math. 284, 2–31 (2014) [transl. from Tr. Mat. Inst. Steklova 284, 8–37 (2014)].

    Article  MathSciNet  Google Scholar 

  11. D. B. Bazarkhanov, “Optimal numerical integration on classes of smooth functions in several variables,” Kazakh Math. J. 20 (3), 101–110 (2020).

    Google Scholar 

  12. O. V. Besov, “Interpolation, embedding, and extension of spaces of functions of variable smoothness,” Proc. Steklov Inst. Math. 248, 47–58 (2005) [transl. from Tr. Mat. Inst. Steklova 248, 52–63 (2005)].

    MathSciNet  MATH  Google Scholar 

  13. O. V. Besov, V. P. Il’in, and S. M. Nikol’skii, Integral Representations of Functions and Embedding Theorems (Nauka, Moscow, 1996), 2nd ed. Engl. transl. of the 1st ed.: Integral Representations of Functions and Imbedding Theorems (J. Wiley & Sons, New York, 1979).

    MATH  Google Scholar 

  14. V. A. Bykovskii, “Extremal cubature formulas for anisotropic classes,” Dal’nevost. Mat. Zh. 19 (1), 10–19 (2019).

    MathSciNet  MATH  Google Scholar 

  15. V. V. Dubinin, “Cubature formulas for classes of functions with bounded mixed difference,” Sb. Math. 76 (2), 283–292 (1993) [transl. from Mat. Sb. 183 (7), 23–34 (1992)].

    Article  MathSciNet  Google Scholar 

  16. V. V. Dubinin, “Cubature formulae for Besov classes,” Izv. Math. 61 (2), 259–283 (1997) [transl. from Izv. Ross. Akad. Nauk, Ser. Mat. 61 (2), 27–52 (1997)].

    Article  MathSciNet  Google Scholar 

  17. D. Dũng, V. Temlyakov, and T. Ullrich, Hyperbolic Cross Approximation (Birkhäuser, Cham, 2018).

    Book  Google Scholar 

  18. C. Fefferman and E. M. Stein, “Some maximal inequalities,” Am. J. Math. 93, 107–115 (1971).

    Article  MathSciNet  Google Scholar 

  19. K. K. Frolov, “Upper error bounds for quadrature formulas on function classes,” Sov. Math., Dokl. 17, 1665–1669 (1977) [transl. from Dokl. Akad. Nauk SSSR 231 (4), 818–821 (1976)].

    MATH  Google Scholar 

  20. P. M. Gruber and C. G. Lekkerkerker, Geometry of Numbers (North-Holland, Amsterdam, 1987), North-Holland Math. Libr. 37.

    Book  Google Scholar 

  21. E. Hlawka, “Zur angenäherten Berechnung mehrfacher Integrale,” Monatsh. Math. 66, 140–151 (1962).

    Article  MathSciNet  Google Scholar 

  22. G. A. Kalyabin, “Theorems on extension, multipliers and diffeomorphisms for generalized Sobolev–Liouville classes in domains with a Lipschitz boundary,” Proc. Steklov Inst. Math. 172, 191–205 (1987) [transl. from Tr. Mat. Inst. Steklova 172, 173–186 (1985)].

    MathSciNet  MATH  Google Scholar 

  23. N. M. Korobov, “Approximate calculation of multiple integrals,” Dokl. Akad. Nauk SSSR 124 (6), 1207–1210 (1959).

    MathSciNet  MATH  Google Scholar 

  24. V. K. Nguyen, M. Ullrich, and T. Ullrich, “Change of variable in spaces of mixed smoothness and numerical integration of multivariate functions on the unit cube,” Constr. Approx. 46 (1), 69–108 (2017).

    Article  MathSciNet  Google Scholar 

  25. V. S. Rychkov, “On a theorem of Bui, Paluszyński, and Taibleson,” Proc. Steklov Inst. Math. 227, 280–292 (1999) [transl. from Tr. Mat. Inst. Steklova 227, 286–298 (1999)].

    MATH  Google Scholar 

  26. V. S. Rychkov, “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains,” J. London Math. Soc. 60 (1), 237–257 (1999).

    Article  MathSciNet  Google Scholar 

  27. H.-J. Schmeisser and H. Triebel, Topics in Fourier Analysis and Function Spaces (J. Wiley & Sons, Chichester, 1987).

    MATH  Google Scholar 

  28. M. M. Skriganov, “Constructions of uniform distributions in terms of geometry of numbers,” St. Petersburg Math. J. 6 (3), 635–664 (1995) [repr. from Algebra Anal. 6 (3), 200–230 (1994)].

    MathSciNet  Google Scholar 

  29. S. L. Sobolev, An Introduction to the Theory of Cubature Formulas (Nauka, Moscow, 1974). Engl. transl.: Cubature Formulas and Modern Analysis: An Introduction (Gordon and Breach Sci. Publ., Montreux, 1992).

    Google Scholar 

  30. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton Univ. Press, Princeton, NJ, 1971).

    MATH  Google Scholar 

  31. V. N. Temlyakov, “On a way of obtaining lower estimates for the errors of quadrature formulas,” Math. USSR, Sb. 71 (1), 247–257 (1992) [transl. from Mat. Sb. 181 (10), 1403–1413 (1990)].

    Article  MathSciNet  Google Scholar 

  32. V. N. Temlyakov, “Error estimates for Fibonacci quadrature formulas for classes of functions with bounded mixed derivative,” Proc. Steklov Inst. Math. 200, 359–367 (1993) [transl. from Tr. Mat. Inst. Steklova 200, 327–335 (1991)].

    MathSciNet  MATH  Google Scholar 

  33. V. N. Temlyakov, “On error estimates for cubature formulas,” Proc. Steklov Inst. Math. 207, 299–309 (1995) [transl. from Tr. Mat. Inst. Steklova 207, 326–338 (1994)].

    MathSciNet  MATH  Google Scholar 

  34. V. Temlyakov, Multivariate Approximation (Cambridge Univ. Press, Cambridge, 2018).

    Book  Google Scholar 

  35. H. Triebel, Theory of Function Spaces II (Birkhäuser, Basel, 1992).

    Book  Google Scholar 

  36. M. Ullrich and T. Ullrich, “The role of Frolov’s cubature formula for functions with bounded mixed derivative,” SIAM J. Numer. Anal. 54 (2), 969–993 (2016).

    Article  MathSciNet  Google Scholar 

  37. T. Ullrich, “Local mean characterization of Besov–Triebel–Lizorkin type spaces with dominating mixed smoothness on rectangular domains,” Preprint (Univ. Bonn, Bonn, 2008).

  38. J. Vybiral, Function Spaces with Dominating Mixed Smoothness (Inst. Mat. PAN, Warsaw, 2006), Diss. Math. 436.

    MATH  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Education and Science, Republic of Kazakhstan, under grant AP05133257.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Bazarkhanov.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Vol. 312, pp. 22–42 https://doi.org/10.4213/tm4153.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazarkhanov, D.B. Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables. Proc. Steklov Inst. Math. 312, 16–36 (2021). https://doi.org/10.1134/S0081543821010028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543821010028

Navigation