Skip to main content
Log in

Curvature Properties of Twistor Spaces

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We review some results on the Riemannian and almost Hermitian geometry of twistor spaces of oriented Riemannian \(4\)-manifolds with emphasis on their curvature properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Alexandrov, G. Grantcharov, and S. Ivanov, “Curvature properties of twistor spaces of quaternionic Kähler manifolds,” J. Geom. 62 (1–2), 1–12 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Ali, J. Davidov, and O. Mushkarov, “Compatible almost complex structures on twistor spaces and their Gray–Hervella classes,” J. Geom. Phys. 75, 213–229 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Ali, J. Davidov, and O. Mushkarov, “Holomorphic curvatures of twistor spaces,” Int. J. Geom. Methods Mod. Phys. 11 (3), 1450022 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Angella, A. Otal, L. Ugarte, and R. Villacampa, “On Gauduchon connections with Kähler-like curvature,” arXiv: 1809.02632v1 [math.DG].

  5. V. Apostolov, “Compact \(*\)-Einstein Hermitian surfaces of negative type,” C. R. Acad. Bulg. Sci. 48 (11–12), 19–22 (1995).

    MathSciNet  MATH  Google Scholar 

  6. V. Apostolov, J. Armstrong, and T. Drăghici, “Local rigidity of certain classes of almost Kähler 4-manifolds,” Ann. Global Anal. Geom. 21 (2), 151–176 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Apostolov, J. Armstrong, and T. Drăghici, “Local models and integrability of certain almost Kähler 4 -manifolds,” Math. Ann. 323 (4), 633–666 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Apostolov and J. Davidov, “Compact Hermitian surfaces and isotropic curvature,” Ill. J. Math. 44 (2), 438–451 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Apostolov, J. Davidov, and O. Muškarov, “Compact self-dual Hermitian surfaces,” Trans. Am. Math. Soc. 348 (8), 3051–3063 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Apostolov and T. Drăghici, “Almost Kähler 4-manifolds with \(J\)-invariant Ricci tensor and special Weyl tensor,” Q. J. Math. 51 (3), 275–294 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Apostolov and T. Drăghici, “The curvature and the integrability of almost-Kähler manifolds: A survey,” in Symplectic and Contact Topology: Interactions and Perspectives (Am. Math. Soc., Providence, RI, 2003), Fields Inst. Commun. 35, pp. 25–53.

    MATH  Google Scholar 

  12. V. Apostolov and P. Gauduchon, “The Riemannian Goldberg–Sachs theorem,” Int. J. Math. 8 (4), 421–439 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. Apostolov and P. Gauduchon, “Selfdual Einstein Hermitian four-manifolds,” Ann. Sc. Norm. Super. Pisa, Cl. Sci., Ser. 5, 1 (1), 203–243 (2002).

    MathSciNet  MATH  Google Scholar 

  14. V. Apostolov, G. Grantcharov, and S. Ivanov, “Hermitian structures on twistor spaces,” Ann. Global Anal. Geom. 16 (3), 291–308 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Armstrong, “An ansatz for almost-Kähler, Einstein 4-manifolds,” J. Reine Angew. Math. 542, 53–84 (2002).

    MathSciNet  MATH  Google Scholar 

  16. M. F. Atiyah, N. J. Hitchin, and I. M. Singer, “Self-duality in four-dimensional Riemannian geometry,” Proc. R. Soc. London A 362, 425–461 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Balas, “Compact Hermitian manifolds of constant holomorphic sectional curvature,” Math. Z. 189, 193–210 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Balas and P. Gauduchon, “Any Hermitian metric of constant non-positive (Hermitian) holomorphic sectional curvature on a compact complex surface is Kähler,” Math. Z. 190, 39–43 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. L. Besse, Einstein Manifolds (Springer, Berlin, 1987).

    Book  MATH  Google Scholar 

  20. R. L. Bishop and S. I. Goldberg, “Some implications of the generalized Gauss–Bonnet theorem,” Trans. Am. Math. Soc. 112, 508–535 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  21. J.-M. Bismut, “A local index theorem for non-Kähler manifolds,” Math. Ann. 284 (4), 681–699 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  22. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds (Birkhäuser, Boston, 2002), Prog. Math. 203.

    Book  MATH  Google Scholar 

  23. D. E. Blair and S. Ianus, “Critical associated metrics on symplectic manifolds,” in Nonlinear Problems in Geometry: Proc. AMS Spec. Sess., 1985, Ed. by D. M. DeTurck (Am. Math. Soc., Providence, RI, 1986), Contemp. Math. 51, pp. 23–29.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Blanchard, “Sur les variétés analytiques complexes,” Ann. Sci. Éc. Norm. Supér., Sér. 3, 73, 157–202 (1956).

    MATH  Google Scholar 

  25. W. M. Boothby, “Hermitian manifolds with zero curvature,” Mich. Math. J. 5, 229–233 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  26. D. M. J. Calderbank and H. Pedersen, “Selfdual Einstein metrics with torus symmetry,” J. Diff. Geom. 60 (3), 485–521 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  27. X. X. Chen, “On Kähler manifolds with positive orthogonal bisectional curvature,” Adv. Math. 215 (2), 427–445 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  28. S.-S. Chern, Complex Manifolds without Potential Theory, 2nd ed. (Springer, New York, 1979).

    Book  MATH  Google Scholar 

  29. M. Conder and C. Maclachlan, “Compact hyperbolic 4-manifolds of small volume,” Proc. Am. Math. Soc. 133 (8), 2469–2476 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  30. J. E. D’Atri and H. K. Nickerson, “Divergence-preserving geodesic symmetries,” J. Diff. Geom. 3, 467–476 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Davidov, “Einstein condition and twistor spaces of compatible partially complex structures,” Diff. Geom. Appl. 22 (2), 159–179 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Davidov, “Harmonic almost Hermitian structures,” in Special Metrics and Group Actions in Geometry: Proc. INdAM Workshop “New Perspectives in Differential Geometry,” Rome, 2015 (Springer, Cham, 2017), Springer INdAM Ser. 23, pp. 129–159.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Davidov, G. Grantcharov, and O. Muškarov, “Twistorial examples of \(*\)-Einstein manifolds,” Ann. Global Anal. Geom. 20 (2), 103–115 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Davidov, G. Grantcharov, and O. Muškarov, “Curvature properties of the Chern connection of twistor spaces,” Rocky Mt. J. Math. 39 (1), 27–48 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Davidov and O. Muškarov, “Twistor spaces with Hermitian Ricci tensor,” Proc. Am. Math. Soc. 109 (4), 1115–1120 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Davidov and O. Muškarov, “On the Riemannian curvature of a twistor space,” Acta Math. Hung. 58 (3–4), 319–332 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Davidov and O. Mushkarov, “Twistorial examples of almost Hermitian manifolds with Hermitian Ricci tensor,” Acta Math. Hung. 156 (1), 194–203 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Davidov, O. Muškarov, and G. Grantcharov, “Almost complex structures on twistor spaces,” in Almost Complex Structures: Proc. Int. Workshop, Sofia, 1992 (World Scientific, Singapore, 1994), pp. 113–149.

    MathSciNet  MATH  Google Scholar 

  39. J. Davidov, O. Muškarov, and G. Grantcharov, “Kähler curvature identities for twistor spaces,” Ill. J. Math. 39 (4), 627–634 (1995).

    Article  MATH  Google Scholar 

  40. A. Derdziński, “Classification of certain compact Riemannian manifolds with harmonic curvature and non-parallel Ricci tensor,” Math. Z. 172, 273–280 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Derdziński, “Exemples de métriques de Kähler et d’Einstein autoduales sur le plan complexe,” in Géométrie riemannienne en dimension 4: Sémin. Arthur Besse 1978/79, Ed. by L. Bérard Bergery, M. Berger, and C. Houzel (CEDIC/Fernand Nathan, Paris, 1981), pp. 334–346.

    MATH  Google Scholar 

  42. G. Deschamps, “Compatible complex structures on twistor space,” Ann. Inst. Fourier 61 (6), 2219–2248 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  43. S. K. Donaldson, “Remarks on gauge theory, complex geometry and 4-manifold topology,” in Fields Medallists’ Lectures, Ed. by M. Atiyah and D. Iagolnitzer (World Scientific, Singapore, 1997), pp. 384–403.

    Article  MathSciNet  Google Scholar 

  44. T. C. Drăghici, “On the almost Kähler manifolds with Hermitian Ricci tensor,” Houston J. Math. 20 (2), 293–298 (1994).

    MathSciNet  MATH  Google Scholar 

  45. T. C. Drăghici, “On some 4-dimensional almost Kähler manifolds,” Kodai Math. J. 18 (1), 156–168 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  46. T. C. Drăghici, “Almost Kähler 4-manifolds with \(J\)-invariant Ricci tensor,” Houston J. Math. 25 (1), 133–145 (1999).

    MathSciNet  MATH  Google Scholar 

  47. J. Eells and S. Salamon, “Twistorial construction of harmonic maps of surfaces into four-manifolds,” Ann. Sc. Norm. Super. Pisa, Cl. Sci., Ser. 4, 12, 589–640 (1985).

    MathSciNet  MATH  Google Scholar 

  48. J. Fine and D. Panov, “Symplectic Calabi–Yau manifolds, minimal surfaces and the hyperbolic geometry of the conifold,” J. Diff. Geom. 82 (1), 155–205 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  49. T. Friedrich and R. Grunewald, “On Einstein metrics on the twistor space of a four-dimensional Riemannian manifold,” Math. Nachr. 123, 55–60 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  50. T. Friedrich and H. Kurke, “Compact four-dimensional self-dual Einstein manifolds with positive scalar curvature,” Math. Nachr. 106, 271–299 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  51. P. Gauduchon, “Structures de Weyl et théorèmes d’annulation sur une variété conforme autoduale,” Ann. Sc. Norm. Super. Pisa, Cl. Sci., Ser. 4, 18 (4), 563–629 (1991).

    MATH  Google Scholar 

  52. P. Gauduchon, “Hermitian connections and Dirac operators,” Boll. Unione Mat. Ital., Ser. 7 B 11 (2 suppl.), 257–288 (1997).

    MathSciNet  MATH  Google Scholar 

  53. S. I. Goldberg, “Integrability of almost Kaehler manifolds,” Proc. Am. Math. Soc. 21, 96–100 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  54. S. I. Goldberg and S. Kobayashi, “Holomorphic bisectional curvature,” J. Diff. Geom. 1, 225–233 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  55. A. Gray, “Curvature identities for Hermitian and almost Hermitian manifolds,” Tohoku Math. J. 28, 601–612 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  56. A. Gray, “The structure of nearly Kähler manifolds,” Math. Ann. 223, 233–248 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  57. A. Gray, “Einstein-like manifolds which are not Einstein,” Geom. Dedicata 7, 259–280 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  58. A. Gray, M. Barros, A. M. Naveira, and L. Vanhecke, “The Chern numbers of holomorphic vector bundles and formally holomorphic connections of complex vector bundles over almost complex manifolds,” J. Reine Angew. Math. 314, 84–98 (1980).

    MathSciNet  MATH  Google Scholar 

  59. A. Gray and L. Hervella, “The sixteen classes of almost Hermitian manifolds and their linear invariants,” Ann. Mat. Pura Appl., Ser. 4, 123, 35–58 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  60. H. Gu and Z. Zhang, “An extension of Mok’s theorem on the generalized Frankel conjecture,” Sci. China, Math. 53 (5), 1253–1264 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  61. N. Hitchin, “Compact four-dimensional Einstein manifolds,” J. Diff. Geom. 9, 435–441 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  62. N. J. Hitchin, “Kählerian twistor spaces,” Proc. London Math. Soc., Ser. 3, 43, 133–150 (1981).

    Article  MATH  Google Scholar 

  63. N. J. Hitchin, “Twistor spaces, Einstein metrics and isomonodromic deformations,” J. Diff. Geom. 42 (1), 30–112 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  64. C.-S. Houh, “On totally real bisectional curvature,” Proc. Am. Math. Soc. 56, 261–263 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  65. W. Jelonek, “Self-duality and \(\mathcal A\)-manifolds,” J. London Math. Soc., Ser. 2, 58 (3), 697–708 (1998).

    Article  MathSciNet  Google Scholar 

  66. M. Kalafat and C. Koca, “On the curvature of Einstein–Hermitian surfaces,” Ill. J. Math. 62 (1–4), 25–39 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  67. U-H. Ki and H. Nakagawa, “A characterization of the Cartan hypersurface in a sphere,” Tohoku Math. J., Ser. 2, 39, 27–40 (1987).

    MathSciNet  MATH  Google Scholar 

  68. U-H. Ki and Y. J. Suh, “On semi-Kaehler manifolds whose totally real bisectional curvature is bounded from below,” J. Korean Math. Soc. 33 (4), 1009–1038 (1996).

    MathSciNet  MATH  Google Scholar 

  69. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry (J. Wiley & Sons, Hoboken, NJ, 2009), Vol. 2.

    MATH  Google Scholar 

  70. C. LeBrun, “On complete quaternionic-Kähler manifolds,” Duke Math. J. 63 (3), 723–743 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  71. C. LeBrun, “Ricci curvature, minimal volumes, and Seiberg–Witten theory,” Invent. Math. 145 (2), 279–316 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  72. A. J. Ledger, “Harmonic Riemannian spaces,” PhD thesis (Univ. Durham, Durham, 1954).

  73. A. Lichnerowicz, Théorie globale des connexions et des groupes d’holonomie (Ed. Cremonese, Roma, 1955).

    MATH  Google Scholar 

  74. Y. Matsushita, “Fields of 2-planes and two kinds of almost complex structures on compact 4-dimensional manifolds,” Math. Z. 207 (2), 281–291 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  75. N. Mok, “The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature,” J. Diff. Geom. 27 (2), 179–214 (1988).

    Article  MATH  Google Scholar 

  76. S. Mori, “Projective manifolds with ample tangent bundles,” Ann. Math., Ser. 2, 110, 593–606 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  77. O. Muškarov, “Structures presque hermitiennes sur des espaces twistoriels et leurs types,” C. R. Acad. Sci., Paris, Sér. 1, 305, 307–309 (1987).

    MathSciNet  Google Scholar 

  78. P. Nurowski, “Einstein equations and Cauchy–Riemann geometry,” PhD thesis (SISSA/ISAS, Trieste, 1993).

  79. B. O’Neill, “The fundamental equations of a submersion,” Mich. Math. J. 13, 459–469 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  80. H. Pedersen and P. Tod, “The Ledger curvature conditions and D’Atri geometry,” Diff. Geom. Appl. 11 (2), 155–162 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  81. R. Penrose, “Twistor theory, its aims and achievements,” in Quantum Gravity: An Oxford Symposium (Clarendon Press, Oxford, 1975), pp. 268–407.

    Google Scholar 

  82. R. Penrose, “The twistor programme,” Rep. Math. Phys. 12 (1), 65–76 (1977).

    Article  MathSciNet  Google Scholar 

  83. M. Pontecorvo, “On twistor spaces of anti-self-dual Hermitian surfaces,” Trans. Am. Math. Soc. 331 (2), 653–661 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  84. M. Przanowski and B. Broda, “Locally Kähler gravitational instantons,” Acta Phys. Polon. B 14 (9), 637–661 (1983).

    MathSciNet  Google Scholar 

  85. T. Sato, “On some compact almost Kähler manifolds with constant holomorphic sectional curvature,” in Geometry of Manifolds: Coll. Pap. 35th Symp. Diff. Geom., Matsumoto, 1988, Ed. by K. Shiohama (Academic, Boston, 1989), Perspect. Math. 8, pp. 129–139.

    Google Scholar 

  86. K. Sekigawa, “On some 4-dimensional compact Einstein almost Kähler manifolds,” Math. Ann. 271, 333–337 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  87. I. M. Singer and J. A. Thorpe, “The curvature of 4-dimensional Einstein spaces,” in Global Analysis: Papers in Honor of K. Kodaira (Princeton Univ. Press, Princeton, NJ, 1969), Princeton Math. Ser. 29, pp. 355–365.

    MathSciNet  MATH  Google Scholar 

  88. Y.-T. Siu and S.-T. Yau, “Compact Kähler manifolds of positive bisectional curvature,” Invent. Math. 59, 189–204 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  89. A. Strominger, “Superstrings with torsion,” Nucl. Phys. B 274 (2), 253–284 (1986).

    Article  MathSciNet  Google Scholar 

  90. Z. I. Szabo, “Spectral theory for operator families on Riemannian manifolds,” in Differential Geometry, Part 3: Riemannian Geometry: Proc. Summer Res. Inst., Los Angeles, 1990, Ed. by R. Green and S.-T. Yau (Am. Math. Soc., Providence, RI, 1993), Proc. Symp. Pure Math. 54, Part 3, pp. 615–665.

    MathSciNet  MATH  Google Scholar 

  91. S.-I. Tachibana, “On almost-analytic vectors in certain almost-Hermitian manifolds,” Tohoku Math. J., Ser. 2, 11 (3), 351–363 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  92. W.-K. To and S.-K. Yeung, “Kähler metrics of negative holomorphic bisectional curvature on Kodaira surfaces,” Bull. London Math. Soc. 43 (3), 507–512 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  93. F. Tricerri and L. Vanhecke, “Curvature tensors on almost Hermitian manifolds,” Trans. Am. Math. Soc. 267, 365–398 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  94. I. Vaisman, “Some curvature properties of locally conformally Kähler manifolds,” Trans. Am. Math. Soc. 259, 439–447 (1980).

    MATH  Google Scholar 

  95. I. Vaisman, “Some curvature properties of complex surfaces,” Ann. Mat. Pura Appl., Ser. 4, 132, 1–18 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  96. L. Vezzoni, “On the Hermitian curvature of symplectic manifolds,” Adv. Geom. 7 (2), 207–214 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  97. A. Vitter, “Self-dual Einstein metrics,” in Nonlinear Problems in Geometry: Proc. AMS Spec. Sess., 1985, Ed. by D. M. DeTurck (Am. Math. Soc., Providence, RI, 1986), Contemp. Math. 51, pp. 113–120.

    Article  MathSciNet  MATH  Google Scholar 

  98. T. J. Willmore, Riemannian Geometry (Clarendon Press, Oxford, 1993).

    MATH  Google Scholar 

  99. J. A. Wolf and A. Gray, “Homogeneous spaces defined by Lie group automorphisms. I, II,” J. Diff. Geom. 2, 77–114, 115–159 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  100. C. M. Wood, “Harmonic almost-complex structures,” Compos. Math. 99 (2), 183–212 (1995).

    MathSciNet  MATH  Google Scholar 

  101. B. Yang and F. Zheng, “On curvature tensors of Hermitian manifolds,” Commun. Anal. Geom. 26 (5), 1195–1222 (2018); arXiv: 1602.01189v1 [math.DG].

    Article  MathSciNet  MATH  Google Scholar 

  102. S.-T. Yau, Q. Zhao, and F. Zheng, “On Strominger Kähler-like manifolds with degenerate torsion,” arXiv: 1908.05322v1 [math.DG].

Download references

Acknowledgments

The authors would like to thank the editors of this volume for the invitation to submit a paper in honour of Professor Armen Sergeev, our dear friend and colleague.

Funding

The work is partially supported by the National Science Fund, Ministry of Education and Science of Bulgaria, under contract DN 12/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Davidov.

Additional information

Dedicated to Professor Armen Sergeev on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidov, J., Mushkarov, O. Curvature Properties of Twistor Spaces. Proc. Steklov Inst. Math. 311, 78–97 (2020). https://doi.org/10.1134/S008154382006005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S008154382006005X

Keywords

Navigation