Skip to main content
Log in

Symplectic Structures on Teichmüller Spaces \({\mathfrak{T}_{g,s,n}}\) and Cluster Algebras

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We recall the fat-graph description of Riemann surfaces Σg,s,n and the corresponding Teichmüller spaces \({\mathfrak{T}_{g,s,n}}\) with s > 0 holes and n > 0 bordered cusps in the hyperbolic geometry setting. If n > 0, we have a bijection between the set of Thurston shear coordinates and Penner’s λ-lengths. Then we can define, on the one hand, a Poisson bracket on λ-lengths that is induced by the Poisson bracket on shear coordinates introduced by V. V. Fock in 1997 and, on the other hand, a symplectic structure ΩWP on the set of extended shear coordinates that is induced by Penner’s symplectic structure on λ-lengths. We derive the symplectic structure ΩWP, which turns out to be similar to Kontsevich’s symplectic structure for ψ-classes in complex analytic geometry, and demonstrate that it is indeed inverse to Fock’s Poisson structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. A. Yu. Alekseev and A. Z. Malkin, “Symplectic structure of the moduli space of flat connection on a Riemann surface,” Commun. Math. Phys. 169 (1), 99–119 (1995).

    MathSciNet  MATH  Google Scholar 

  2. A. Berenstein and A. Zelevinsky, “Quantum cluster algebras,” Adv. Math. 195 (2), 405–455 (2005); arXiv: math/0404446 [math.QA].

    MathSciNet  MATH  Google Scholar 

  3. M. Bertola and D. Korotkin, “Extended Goldman symplectic structure in Fock-Goncharov coordinates,” arXiv: 1910.06744 [math-ph].

  4. F. Bonahon, “Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form,” Ann. Fac. Sci. Toulouse, Math., Ser. 6, 5 (2), 233–297 (1996).

    MathSciNet  MATH  Google Scholar 

  5. L. Chekhov and M. Mazzocco, “Colliding holes in Riemann surfaces and quantum cluster algebras,” arXiv: 1509.07044 [math-ph].

  6. L. O. Chekhov, M. Mazzocco, and V. N. Rubtsov, “Painleve monodromy manifolds, decorated character varieties, and cluster algebras,” Int. Math. Res. Not. 2017 (24), 7639–7691 (2017).

    MathSciNet  MATH  Google Scholar 

  7. L. Chekhov and M. Shapiro, “Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables,” Int. Math. Res. Not. 2014 (10), 2746–2772 (2014); arXiv: 1111.3963 [math-ph].

    MATH  Google Scholar 

  8. L. D. Faddeev, “Discrete Heisenberg-Weyl group and modular group,” Lett. Math. Phys. 34 (3), 249–254 (1995).

    MathSciNet  MATH  Google Scholar 

  9. V. V. Fock, “Description of moduli space of projective structures via fat graphs,” arXiv: hep-th/9312193.

  10. V. V. Fock, “Dual Teichmuüller spaces,” arXiv: dg-ga/9702018v3.

  11. V. V. Fock and L. O. Chekhov, “A quantum Techmuüller space,” Theor. Math. Phys. 120 (3), 1245–1259 (1999) [transl. from Teor. Mat. Fiz. 120 (3), 511–528 (1999)]; arXiv: math/9908165 [math.QA].

    MATH  Google Scholar 

  12. V. V. Fock and L. O. Chekhov, “Quantum mapping class group, pentagon relation, and geodesics,” Proc. Steklov Inst. Math. 226, 149–163 (1999) [transl. from Tr. Mat. Inst. Steklova 226, 163–179 (1999)].

    MATH  Google Scholar 

  13. V. Fock and A. Goncharov, “Moduli spaces of local systems and higher Teichmuüller theory,” Publ. Math., Inst. Hautes Étud. Sci. 103, 1–211 (2006); arXiv: math/0311149v4 [math.AG].

    Google Scholar 

  14. V. V. Fock and A. A. Rosly, “Moduli space of flat connections as a Poisson manifold,” Int. J. Mod. Phys. B 11 (26–27), 3195–3206 (1997).

    MathSciNet  MATH  Google Scholar 

  15. S. Fomin, M. Shapiro, and D. Thurston, “Cluster algebras and triangulated surfaces. Part I: Cluster complexes,” Acta Math. 201 (1), 83–146 (2008).

    MathSciNet  MATH  Google Scholar 

  16. S. Fomin and D. Thurston, Cluster Algebras and Triangulated Surfaces. Part II: Lambda Lengths (Am. Math. Soc., Providence, RI, 2018), Mem. AMS 255 (1223); arXiv: 1210.5569 [math.GT].

    MATH  Google Scholar 

  17. S. Fomin and A. Zelevinsky, “Cluster algebras. I: Foundations,” J. Am. Math. Soc. 15 (2), 497–529 (2002).

    MathSciNet  MATH  Google Scholar 

  18. S. Fomin and A. Zelevinsky, “Cluster algebras. II: Finite type classification,” Invent. Math. 154 (1), 63–121 (2003).

    MathSciNet  MATH  Google Scholar 

  19. W. M. Goldman, “Invariant functions on Lie groups and Hamiltonian flows of surface group representations,” Invent. Math. 85 (2), 263–302 (1986).

    MathSciNet  MATH  Google Scholar 

  20. R. M. Kashaev, “Quantization of Teichmüller spaces and the quantum dilogarithm,” Lett. Math. Phys. 43 (2), 105–115 (1998); arXiv: q-alg/9705021.

    MathSciNet  MATH  Google Scholar 

  21. G. Musiker, R. Schiffler, and L. Williams, “Positivity for cluster algebras from surfaces,” Adv. Math. 227 (6), 2241–2308 (2011).

    MathSciNet  MATH  Google Scholar 

  22. G. Musiker and L. Williams, “Matrix formulae and skein relations for cluster algebras from surfaces,” Int. Math. Res. Not. 2013 (13), 2891–2944 (2013).

    MathSciNet  MATH  Google Scholar 

  23. A. Papadopoulos and R. C. Penner, “The Weil-Petersson symplectic structure at Thurston’s boundary,” Trans. Am. Math. Soc. 335 (2), 891–904 (1993).

    MathSciNet  MATH  Google Scholar 

  24. R. C. Penner, “The decorated Teichmüller space of punctured surfaces,” Commun. Math. Phys. 113 (2), 299–339 (1987).

    MATH  Google Scholar 

  25. R. C. Penner, “Weil-Petersson volumes,” J. Diff. Geom. 35 (3), 559–608 (1992).

    MathSciNet  MATH  Google Scholar 

  26. W. P. Thurston, “Minimal stretch maps between hyperbolic surfaces,” arXiv: math/9801039 [math.GT].

Download references

Funding

The work was supported in part by the Russian Foundation for Basic Research, project no. 18-01-00460.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid O. Chekhov.

Additional information

Dedicated to my teacher Andrei Alekseevich Slavnov on the occasion of his 80th birthday

This article was submitted by the author simultaneously in Russian and English

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2020, Vol. 309, pp. 99–109.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chekhov, L.O. Symplectic Structures on Teichmüller Spaces \({\mathfrak{T}_{g,s,n}}\) and Cluster Algebras. Proc. Steklov Inst. Math. 309, 87–96 (2020). https://doi.org/10.1134/S0081543820030074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543820030074

Navigation