Skip to main content
Log in

Feynman Formulas and the Law of Large Numbers for Random One-Parameter Semigroups

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We study sequences of compositions of independent identically distributed random one-parameter semigroups of linear transformations of a Hilbert space and the asymptotic properties of the distributions of such compositions when the number of terms in the composition tends to infinity. To study the expectation of such compositions, we apply the Feynman-Chernoff iterations obtained via Chernoff’s theorem. By the Feynman-Chernoff iterations we mean prelimit expressions from the Feynman formulas; the latter are representations of one-parameter semigroups or related objects in terms of the limit of integrals over Cartesian powers of an appropriate space, or some generalizations of such representations. In particular, we study the deviation of the values of compositions of independent random semigroups from their expectation and examine the validity for such compositions of analogs of the limit theorems of probability theory such as the law of large numbers. We obtain sufficient conditions under which any neighborhood of the expectation of a composition of n random semigroups contains the (random) value of this composition with probability tending to one as n → ∞ (it is this property that is viewed as the law of large numbers for compositions). We also present examples of sequences of independent random semigroups for which the law of large numbers for compositions fails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Accardi, Y. G. Lu, and I. Volovich, Quantum Theory and Its Stochastic Limit (Springer, Berlin, 2002).

    Book  Google Scholar 

  2. M. L. Blank, Stability and Localization in Chaotic Dynamics (MTsNMO, Moscow, 2001) [in Russian].

    Google Scholar 

  3. V. I. Bogachev, Foundations of Measure Theory (Regulyarnaya i Khaoticheskaya Dinamika, Moscow, 2006), Vol. 1. Engl. transl.: V. I. Bogachev, Measure Theory (Springer, Berlin, 2007), Vol. 1.

    Google Scholar 

  4. V. I. Bogachev and O. G. Smolyanov, Real and Functional Analysis (Regulyarnaya i Khaoticheskaya Dinamika, Moscow, 2009) [in Russian].

    Google Scholar 

  5. N. N. Bogolyubov, On Some Statistical Methods in Mathematical Physics (Akad. Nauk Ukr. SSR, Kiev, 1945) [in Russian].

    Google Scholar 

  6. L. A. Borisov, Yu. N. Orlov, and V. J. Sakbaev, “Chernoff equivalence for shift operators, generating coherent states in quantum optics,” Lobachevskii J. Math. 39(6), 742–746 (2018).

    Article  MathSciNet  Google Scholar 

  7. L. A. Borisov, Yu. N. Orlov, and V. Zh. Sakbaev, “Feynman averaging of semigroups generated by Schrödinger operators,” Infin. Dimens. Anal. Quantum Probab. Relat. Top. 21(2), 1850010 (2018).

    Article  MathSciNet  Google Scholar 

  8. P. R. Chernoff, “Note on product formulas for operator semigroups,” J. Funct. Anal. 2(2), 238–242 (1968).

    Article  MathSciNet  Google Scholar 

  9. L. S. Efremova and V. Zh. Sakbaev, “Notion of blowup of the solution set of differential equations and averaging of random semigroups,” Theor. Math. Phys. 185(2), 1582–1598 (2015) [transl. from Teor. Mat. Fiz. 185 (2), 252–271 (2015)].

    Article  MathSciNet  Google Scholar 

  10. K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations (Springer, Berlin, 2000).

    MATH  Google Scholar 

  11. W. Feller, An Introduction to Probability Theory and Its Applications (J. Wiley and Sons, New York, 1971), Vol. 2.

    MATH  Google Scholar 

  12. R. I. Grigorchuk, “Ergodic theorems for actions of free groups and free semigroups,” Math. Notes 65(5), 654–657 (1999) [transl. from Mat. Zametki 65 (5), 779–783 (1999)].

    Article  MathSciNet  Google Scholar 

  13. A. V. Letchikov, “Conditional limit theorem for products of random matrices,” Sb. Math. 186(3), 371–389 (1995) [transl. from Mat. Sb. 186 (3), 65–84 (1995)].

    Article  MathSciNet  Google Scholar 

  14. M. L. Mehta, Random Matrices (Elsevier, Amsterdam, 2004).

    MATH  Google Scholar 

  15. Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, “Feynman formulas as a method of averaging random Hamiltonians,” Proc. Steklov Inst. Math. 285, 222–232 (2014) [transl. from Tr. Mat. Inst. Steklova 285, 232–243 (2014)].

    Article  MathSciNet  Google Scholar 

  16. Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, “Unbounded random operators and Feynman formulae,” Izv. Math. 80(6), 1131–1158 (2016) [transl. from Izv. Ross. Akad. Nauk, Ser. Mat. 80 (6), 141–172 (2016)].

    Article  MathSciNet  Google Scholar 

  17. V. I. Oseledets, “Markov chains, skew products and ergodic theorems for ‘general’ dynamic systems,” Theory Probab. Appl. 10(3), 499–504 (1965) [transl. from Teor. Veroyatn. Primen. 10 (3), 551–557 (1965)].

    Article  MathSciNet  Google Scholar 

  18. L. A. Pastur, “Spectral theory of random self-adjoint operators,” in Probability Theory. Mathematical Statistics. Theoretical Cybernetics (VINITI, Moscow, 1987), Vol. 25, Itogi Nauki Tekh., pp. 3–67. Engl. transl. L. A. Pastur, in J. Sov. Math. 46 (4), 1979–2021 (1989).

    Google Scholar 

  19. V. Yu. Protasov, “Invariant functions for the Lyapunov exponents of random matrices,” Sb. Math. 202(1), 101–126 (2011) [transl. from Mat. Sb. 202 (1), 105–132 (2011)].

    Article  MathSciNet  Google Scholar 

  20. V. Zh. Sakbaev, “Cauchy problem for degenerating linear differential equations and averaging of approximating regularizations,” J. Math. Sci. 213(3), 287–459 (2016) [transl. from Sovrem. Mat., Fundam. Napr. 43, 3–172 (2012)].

    Article  MathSciNet  Google Scholar 

  21. V. Zh. Sakbaev, “On the law of large numbers for compositions of independent random semigroups,” Russ. Math. 60(10), 72–76 (2016) [transl. from Izv. Vyssh. Uchebn. Zaved., Mat., No. 10, 86–91 (2016)].

    Article  MathSciNet  Google Scholar 

  22. V. Zh. Sakbaev, “On the law of the large numbers for the composition of independent random operators and random semigroups,” Tr. Mosk. Fiz.-Tekh. Inst. 8(1), 140–152 (2016).

    Google Scholar 

  23. V. Zh. Sakbaev, “Averaging of random walks and shift-invariant measures on a Hilbert space,” Theor. Math. Phys. 191(3), 886–909 (2017) [transl. from Teor. Mat. Fiz. 191 (3), 473–502 (2017)].

    Article  MathSciNet  Google Scholar 

  24. V. Zh. Sakbaev, “Averaging of random flows of linear and nonlinear maps,” J. Phys.: Conf. Ser. 990, 012012 (2018).

    MathSciNet  Google Scholar 

  25. A. V. Skorokhod, “Products of independent random operators,” Russ. Math. Surv. 38(4), 291–318 (1983) [transl. from Usp. Mat. Nauk 38 (4), 255–280 (1983)].

    Article  MathSciNet  Google Scholar 

  26. O. G. Smolyanov and E. T. Shavgulidze, Functional Integrals (URSS, Moscow, 2015) [in Russian].

    Google Scholar 

  27. O. G. Smolyanov, A. G. Tokarev, and A. Truman, “Hamiltonian Feynman path integrals via the Chernoff formula,” J. Math. Phys. 43(10), 5161–5171 (2002).

    Article  MathSciNet  Google Scholar 

  28. O. G. Smolyanov, H. von Weizsacker, and O. Wittich, “Chernoff’s theorem and discrete time approximations of Brownian motion on manifolds,” Potential Anal. 26, 1–29 (2007).

    Article  MathSciNet  Google Scholar 

  29. B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space (North-Holland, Amsterdam, 1970).

    MATH  Google Scholar 

  30. V. N. Tutubalin, “Some theorems of the type of the strong law of large numbers,” Theory Probab. Appl. 14(2), 313–319 (1969) [transl. from Teor. Veroyatn. Primen. 14 (2), 319–326 (1969)].

    Article  Google Scholar 

  31. K. Yosida, Functional Analysis (Springer, Berlin, 1965).

    Book  Google Scholar 

Download references

Funding

The research of V. Zh. Sakbaev (Sections 2 and 3) was supported by the Russian Science Foundation under grant 19-11-00320 and performed at Steklov Mathematical Institute of Russian Academy of Sciences. The research of Yu. N. Orlov and O. G. Smolyanov (Sections 4–6) was performed within the joint project with the Laboratory of Infinite-Dimensional Analysis and Mathematical Physics at the Faculty of Mechanics and Mathematics, Moscow State University, and supported by the Russian Academic Excellence Project “5–100.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. N. Orlov, V. Zh. Sakbaev or O. G. Smolyanov.

Additional information

Russian Text © The Author(s), 2019, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2019, Vol. 306, pp. 210–226.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, Y.N., Sakbaev, V.Z. & Smolyanov, O.G. Feynman Formulas and the Law of Large Numbers for Random One-Parameter Semigroups. Proc. Steklov Inst. Math. 306, 196–211 (2019). https://doi.org/10.1134/S0081543819050171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543819050171

Navigation