Skip to main content
Log in

Finite Point Configurations in the Plane, Rigidity and Erdős Problems

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

For a finite point set E ⊂ ℝd and a connected graph G on k + 1 vertices, we define a G-framework to be a collection of k + 1 points in E such that the distance between a pair of points is specified if the corresponding vertices of G are connected by an edge. We consider two frameworks the same if the specified edge-distances are the same. We find tight bounds on such distinct-distance drawings for rigid graphs in the plane, deploying the celebrated result of Guth and Katz. We introduce a congruence relation on a wider set of graphs, which behaves nicely in both the real-discrete and continuous settings. We provide a sharp bound on the number of such congruence classes. We then make a conjecture that the tight bound on rigid graphs should apply to all graphs. This appears to be a hard problem even in the case of the nonrigid 2-chain. However, we provide evidence to support the conjecture by demonstrating that if the Erd˝os pinned-distance conjecture holds in dimension d, then the result for all graphs in dimension d follows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Aronov, J. Pach, M. Sharir, and G. Tardos, “Distinct distances in three and higher dimensions,” Comb. Probab. Comput. 13 (3), 283–293 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Asimow and B. Roth, “The rigidity of graphs,” Trans. Am. Math. Soc. 245, 279–289 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Borcea and I. Streinu, “The number of embeddings of minimally rigid graphs,” Discrete Comput. Geom. 31 (2), 287–303 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Chatzikonstantinou, A. Iosevich, S. Mkrtchyan, and J. Pakianathan, “Rigidity, graphs and Hausdorff dimension,” arXiv: 1708.05919 [math.CA].

  5. F. R. K. Chung, “The number of different distances determined by n points in the plane,” J. Comb. Theory, Ser. A 36 (3), 342–354 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  6. F. R. K. Chung, E. Szemerédi, and W. T. Trotter, “The number of different distances determined by a set of points in the Euclidean plane,” Discrete Comput. Geom. 7 (1), 1–11 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  7. K. L. Clarkson, H. Edelsbrunner, L. J. Guibas, M. Sharir, and E. Welzl, “Combinatorial complexity bounds for arrangements of curves and spheres,” Discrete Comput. Geom. 5 (2), 99–160 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Erdős, “On sets of distances of n points,” Am. Math. Mon. 53, 248–250 (1946).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Graver, B. Servatius, and H. Servatius, Combinatorial Rigidity (Am. Math. Soc., Providence, RI, 1993), Grad. Stud. Math. 2.

    Book  MATH  Google Scholar 

  10. L. Guth and N. H. Katz, “On the Erdős distinct distances problem in the plane,” Ann. Math., Ser. 2, 181 (1), 155–190 (2015).

    Article  MATH  Google Scholar 

  11. N. H. Katz and G. Tardos, “A new entropy inequality for the Erdős distance problem,” in Towards a Theory of Geometric Graphs (Am. Math. Soc., Providence, RI, 2004), Contemp. Math. 342, pp. 119–126.

    MATH  Google Scholar 

  12. L. Moser, “On the different distances determined by n points,” Am. Math. Mon. 59 (2), 85–91 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Roth, “Rigid and flexible frameworks,” Am. Math. Mon. 88 (1), 6–21 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Solymosi and Cs. D. Tóth, “Distinct distances in the plane,” Discrete Comput. Geom. 25 (4), 629–634 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Solymosi and V. Vu, “Distinct distances in high dimensional homogeneous sets,” in Towards a Theory of Geometric Graphs (Am. Math. Soc., Providence, RI, 2004), Contemp. Math. 342, pp. 259–268.

    Book  MATH  Google Scholar 

  16. J. Solymosi and V. H. Vu, “Near optimal bounds for the Erdős distinct distances problem in high dimensions,” Combinatorica 28 (1), 113–125 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  17. L. A. Székely, “Crossing numbers and hard Erdős problems in discrete geometry,” Comb. Probab. Comput. 6 (3), 353–358 (1997).

    Article  MATH  Google Scholar 

  18. G. Tardos, “On distinct sums and distinct distances,” Adv. Math. 180 (1), 275–289 (2003).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Iosevich or J. Passant.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Vol. 303, pp. 142–154.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iosevich, A., Passant, J. Finite Point Configurations in the Plane, Rigidity and Erdős Problems. Proc. Steklov Inst. Math. 303, 129–139 (2018). https://doi.org/10.1134/S0081543818080114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543818080114

Navigation