Skip to main content
Log in

To S. P. Novikov on his 80th birthday

Abstract

Formulas relating Poincaré–Steklov operators for Schrödinger equations related by Darboux–Moutard transformations are derived. They can be used for testing algorithms of reconstruction of the potential from measurements at the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. A. N. Adilkhanov and I. A. Taimanov, “On numerical study of the discrete spectrum of a two-dimensional Schrödinger operator with soliton potential,” Commun. Nonlinear Sci. Numer. Simul. 42, 83–92 (2017).

    Article  MathSciNet  Google Scholar 

  2. M. M. Crum, “Associated Sturm–Liouville systems,” Q. J. Math. 6, 121–127 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Darboux, “Sur une proposition relative aux équations linéaires,” C. R. Acad. Sci. Paris 94, 1456–1459 (1882).

    MATH  Google Scholar 

  4. B. A. Dubrovin, I. M. Kričever, and S. P. Novikov, “The Schrödinger equation in a periodic field and Riemann surfaces,” Sov. Math., Dokl. 17, 947–951 (1976) [transl. from Dokl. Akad. Nauk SSSR 229 (1), 15–18 (1976)].

    MATH  Google Scholar 

  5. P. G. Grinevich and R. G. Novikov, “Generalized analytic functions, Moutard-type transforms, and holomorphic maps,” Funct. Anal. Appl. 50 (2), 150–152 (2016) [transl. from Funkts. Anal. Prilozh. 50 (2), 81–84 (2016)].

    Article  MathSciNet  MATH  Google Scholar 

  6. P. G. Grinevich and R. G. Novikov, “Moutard transform approach to generalized analytic functions with contour poles,” Bull. Sci. Math. 140 (6), 638–656 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  7. P. G. Grinevich and R. G. Novikov, “Moutard transform for generalized analytic functions,” J. Geom. Anal. 26 (4), 2984–2995 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  8. P. G. Grinevich and R. G. Novikov, “Moutard transform for the conductivity equation,” arXiv: 1801.00295 [mathph].

  9. P. G. Grinevich and S. P. Novikov, “Two-dimensional ‘inverse scattering problem’ for negative energies and generalized-analytic functions. I: Energies below the ground state,” Funct. Anal. Appl. 22 (1), 19–27 (1988) [transl. from Funkts. Anal. Prilozh. 22 (1), 23–33 (1988)].

    Article  MathSciNet  MATH  Google Scholar 

  10. H.-C. Hu, S.-Y. Lou, and Q.-P. Liu, “Darboux transformation and variable separation approach: the Nizhnik–Novikov–Veselov equation,” Chin. Phys. Lett. 20 (9), 1413–1415 (2003).

    Article  Google Scholar 

  11. R. M. Matuev and I. A. Taimanov, “The Moutard transformation of two-dimensional Dirac operators and the conformal geometry of surfaces in four-dimensional space,” Math. Notes 100 (6), 835–846 (2016) [transl. from Mat. Zametki 100 (6), 868–880 (2016)].

    Article  MathSciNet  MATH  Google Scholar 

  12. V. B. Matveev, “Darboux transformations, covariance theorems and integrable systems,” in L. D. Faddeev’s Seminar on Mathematical Physics (Am. Math. Soc., Providence, RI, 2000), AMS Transl., Ser. 2, 201; Adv. Math. Sci. 49, pp. 179–209.

    Google Scholar 

  13. V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons (Berlin, Springer, 1991).

    Book  MATH  Google Scholar 

  14. Th. Moutard, “Sur la construction des équations de la forme 1 z d2z dxdy = λ(x, y), qui admettent une intégrale générale explicite,” J. Éc. Polytech. 28, 1–11 (1878).

    MATH  Google Scholar 

  15. R. G. Novikov and I. A. Taimanov, “The Moutard transformation and two-dimensional multipoint delta-type potentials,” Russ. Math. Surv. 68 (5), 957–959 (2013) [transl. from Usp. Mat. Nauk 68 (5), 181–182 (2013)].

    Article  MATH  Google Scholar 

  16. R. G. Novikov and I. A. Taimanov, “Moutard type transformation for matrix generalized analytic functions and gauge transformations,” Russ. Math. Surv. 71 (5), 970–972 (2016) [transl. from Usp. Mat. Nauk 71 (5), 179–180 (2016)].

    Article  MATH  Google Scholar 

  17. R. G. Novikov, I. A. Taimanov, and S. P. Tsarev, “Two-dimensional von Neumann–Wigner potentials with a multiple positive eigenvalue,” Funct. Anal. Appl. 48 (4), 295–297 (2014) [transl. from Funkts. Anal. Prilozh. 48 (4), 74–77 (2014)].

    Article  MathSciNet  MATH  Google Scholar 

  18. I. A. Taimanov, “The Moutard transformation of two-dimensional Dirac operators and Möbius geometry,” Math. Notes 97 (1), 124–135 (2015) [transl. from Mat. Zametki 97 (1), 129–141 (2015)].

    Article  MATH  Google Scholar 

  19. I. A. Taimanov, “A fast decaying solution to the modified Novikov–Veselov equation with a one-point singularity,” Dokl. Math. 91 (1), 35–36 (2015) [transl. from Dokl. Akad. Nauk 460 (2), 145–146 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  20. I. A. Taimanov, “Blowing up solutions of the modified Novikov–Veselov equation and minimal surfaces,” Theor. Math. Phys. 182 (2), 173–181 (2015) [transl. from Teor. Mat. Fiz. 182 (2), 213–222 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  21. I. A. Taimanov and S. P. Tsarev, “Two-dimensional Schrödinger operators with fast decaying potential and multidimensional L2-kernel,” Russ. Math. Surv. 62 (3), 631–633 (2007) [transl. from Usp. Mat. Nauk 62 (3), 217–218 (2007)].

    Article  MATH  Google Scholar 

  22. I. A. Taimanov and S. P. Tsarev, “Blowing up solutions of the Novikov–Veselov equation,” Dokl. Math. 77 (3), 467–468 (2008) [transl. from Dokl. Akad. Nauk 420 (6), 744–745 (2008)].

    Article  MathSciNet  MATH  Google Scholar 

  23. I. A. Taimanov and S. P. Tsarev, “Two-dimensional rational solitons and their blowup via the Moutard transformation,” Theor. Math. Phys. 157 (2), 1525–1541 (2008) [transl. from Teor. Mat. Fiz. 157 (2), 188–207 (2008)].

    Article  MATH  Google Scholar 

  24. I. A. Taimanov and S. P. Tsarev, “On the Moutard transformation and its applications to spectral theory and soliton equations,” J. Math. Sci. 170 (3), 371–387 (2010) [transl. from Sovrem. Mat., Fundam. Napr. 35, 101–117 (2010)].

    Article  MathSciNet  MATH  Google Scholar 

  25. I. A. Taimanov and S. P. Tsarev, “Faddeev eigenfunctions for two-dimensional Schrödinger operators via the Moutard transformation,” Theor. Math. Phys. 176 (3), 1176–1183 (2013) [transl. from Teor. Mat. Fiz. 176 (3), 408–416 (2013)].

    Article  MATH  Google Scholar 

  26. A. P. Veselov and S. P. Novikov, “Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formulas and evolution equations,” Sov. Math., Dokl. 30, 588–591 (1984) [transl. from Dokl. Akad. Nauk SSSR 279 (1), 20–24 (1984)].

    MATH  Google Scholar 

  27. A. P. Veselov and S. P. Novikov, “Finite-zone, two-dimensional Schrödinger operators. Potential operators,” Sov. Math., Dokl. 30, 705–708 (1984) [transl. from Dokl. Akad. Nauk SSSR 279 (4), 784–788 (1984)].

    MATH  Google Scholar 

  28. D. Yu, Q. P. Liu, and S. Wang, “Darboux transformation for the modified Veselov–Novikov equation,” J. Phys. A: Math. Gen. 35 (16), 3779–3785 (2002).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Novikov.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Vol. 302, pp. 334–342.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, R.G., Taimanov, I.A. Darboux Moutard Transformations and Poincaré—Steklov Operators. Proc. Steklov Inst. Math. 302, 315–324 (2018). https://doi.org/10.1134/S0081543818060160

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543818060160

Navigation