To S. P. Novikov on his 80th birthday
Abstract
Formulas relating Poincaré–Steklov operators for Schrödinger equations related by Darboux–Moutard transformations are derived. They can be used for testing algorithms of reconstruction of the potential from measurements at the boundary.
References
A. N. Adilkhanov and I. A. Taimanov, “On numerical study of the discrete spectrum of a two-dimensional Schrödinger operator with soliton potential,” Commun. Nonlinear Sci. Numer. Simul. 42, 83–92 (2017).
M. M. Crum, “Associated Sturm–Liouville systems,” Q. J. Math. 6, 121–127 (1955).
G. Darboux, “Sur une proposition relative aux équations linéaires,” C. R. Acad. Sci. Paris 94, 1456–1459 (1882).
B. A. Dubrovin, I. M. Kričever, and S. P. Novikov, “The Schrödinger equation in a periodic field and Riemann surfaces,” Sov. Math., Dokl. 17, 947–951 (1976) [transl. from Dokl. Akad. Nauk SSSR 229 (1), 15–18 (1976)].
P. G. Grinevich and R. G. Novikov, “Generalized analytic functions, Moutard-type transforms, and holomorphic maps,” Funct. Anal. Appl. 50 (2), 150–152 (2016) [transl. from Funkts. Anal. Prilozh. 50 (2), 81–84 (2016)].
P. G. Grinevich and R. G. Novikov, “Moutard transform approach to generalized analytic functions with contour poles,” Bull. Sci. Math. 140 (6), 638–656 (2016).
P. G. Grinevich and R. G. Novikov, “Moutard transform for generalized analytic functions,” J. Geom. Anal. 26 (4), 2984–2995 (2016).
P. G. Grinevich and R. G. Novikov, “Moutard transform for the conductivity equation,” arXiv: 1801.00295 [mathph].
P. G. Grinevich and S. P. Novikov, “Two-dimensional ‘inverse scattering problem’ for negative energies and generalized-analytic functions. I: Energies below the ground state,” Funct. Anal. Appl. 22 (1), 19–27 (1988) [transl. from Funkts. Anal. Prilozh. 22 (1), 23–33 (1988)].
H.-C. Hu, S.-Y. Lou, and Q.-P. Liu, “Darboux transformation and variable separation approach: the Nizhnik–Novikov–Veselov equation,” Chin. Phys. Lett. 20 (9), 1413–1415 (2003).
R. M. Matuev and I. A. Taimanov, “The Moutard transformation of two-dimensional Dirac operators and the conformal geometry of surfaces in four-dimensional space,” Math. Notes 100 (6), 835–846 (2016) [transl. from Mat. Zametki 100 (6), 868–880 (2016)].
V. B. Matveev, “Darboux transformations, covariance theorems and integrable systems,” in L. D. Faddeev’s Seminar on Mathematical Physics (Am. Math. Soc., Providence, RI, 2000), AMS Transl., Ser. 2, 201; Adv. Math. Sci. 49, pp. 179–209.
V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons (Berlin, Springer, 1991).
Th. Moutard, “Sur la construction des équations de la forme 1 z d2z dxdy = λ(x, y), qui admettent une intégrale générale explicite,” J. Éc. Polytech. 28, 1–11 (1878).
R. G. Novikov and I. A. Taimanov, “The Moutard transformation and two-dimensional multipoint delta-type potentials,” Russ. Math. Surv. 68 (5), 957–959 (2013) [transl. from Usp. Mat. Nauk 68 (5), 181–182 (2013)].
R. G. Novikov and I. A. Taimanov, “Moutard type transformation for matrix generalized analytic functions and gauge transformations,” Russ. Math. Surv. 71 (5), 970–972 (2016) [transl. from Usp. Mat. Nauk 71 (5), 179–180 (2016)].
R. G. Novikov, I. A. Taimanov, and S. P. Tsarev, “Two-dimensional von Neumann–Wigner potentials with a multiple positive eigenvalue,” Funct. Anal. Appl. 48 (4), 295–297 (2014) [transl. from Funkts. Anal. Prilozh. 48 (4), 74–77 (2014)].
I. A. Taimanov, “The Moutard transformation of two-dimensional Dirac operators and Möbius geometry,” Math. Notes 97 (1), 124–135 (2015) [transl. from Mat. Zametki 97 (1), 129–141 (2015)].
I. A. Taimanov, “A fast decaying solution to the modified Novikov–Veselov equation with a one-point singularity,” Dokl. Math. 91 (1), 35–36 (2015) [transl. from Dokl. Akad. Nauk 460 (2), 145–146 (2015)].
I. A. Taimanov, “Blowing up solutions of the modified Novikov–Veselov equation and minimal surfaces,” Theor. Math. Phys. 182 (2), 173–181 (2015) [transl. from Teor. Mat. Fiz. 182 (2), 213–222 (2015)].
I. A. Taimanov and S. P. Tsarev, “Two-dimensional Schrödinger operators with fast decaying potential and multidimensional L2-kernel,” Russ. Math. Surv. 62 (3), 631–633 (2007) [transl. from Usp. Mat. Nauk 62 (3), 217–218 (2007)].
I. A. Taimanov and S. P. Tsarev, “Blowing up solutions of the Novikov–Veselov equation,” Dokl. Math. 77 (3), 467–468 (2008) [transl. from Dokl. Akad. Nauk 420 (6), 744–745 (2008)].
I. A. Taimanov and S. P. Tsarev, “Two-dimensional rational solitons and their blowup via the Moutard transformation,” Theor. Math. Phys. 157 (2), 1525–1541 (2008) [transl. from Teor. Mat. Fiz. 157 (2), 188–207 (2008)].
I. A. Taimanov and S. P. Tsarev, “On the Moutard transformation and its applications to spectral theory and soliton equations,” J. Math. Sci. 170 (3), 371–387 (2010) [transl. from Sovrem. Mat., Fundam. Napr. 35, 101–117 (2010)].
I. A. Taimanov and S. P. Tsarev, “Faddeev eigenfunctions for two-dimensional Schrödinger operators via the Moutard transformation,” Theor. Math. Phys. 176 (3), 1176–1183 (2013) [transl. from Teor. Mat. Fiz. 176 (3), 408–416 (2013)].
A. P. Veselov and S. P. Novikov, “Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formulas and evolution equations,” Sov. Math., Dokl. 30, 588–591 (1984) [transl. from Dokl. Akad. Nauk SSSR 279 (1), 20–24 (1984)].
A. P. Veselov and S. P. Novikov, “Finite-zone, two-dimensional Schrödinger operators. Potential operators,” Sov. Math., Dokl. 30, 705–708 (1984) [transl. from Dokl. Akad. Nauk SSSR 279 (4), 784–788 (1984)].
D. Yu, Q. P. Liu, and S. Wang, “Darboux transformation for the modified Veselov–Novikov equation,” J. Phys. A: Math. Gen. 35 (16), 3779–3785 (2002).
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Vol. 302, pp. 334–342.
Rights and permissions
About this article
Cite this article
Novikov, R.G., Taimanov, I.A. Darboux Moutard Transformations and Poincaré—Steklov Operators. Proc. Steklov Inst. Math. 302, 315–324 (2018). https://doi.org/10.1134/S0081543818060160
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0081543818060160