Skip to main content
Log in

Quantum Transport in Degenerate Systems

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

Transport in nonequilibrium degenerate quantum systems is investigated. The transfer rate depends on the parameters of the system. In this paper we investigate the dependence of the flow (transfer rate) on the angle between “bright” vectors (which define the interaction of the system with the environment). We show that in some approximation for the system under investigation the flow is proportional to the cosine squared of the angle between the “bright” vectors. Earlier the author has shown that in this degenerate quantum system excitation of nondecaying quantum “dark” states is possible; moreover, the effectiveness of this process is proportional to the sine squared of the angle between the “bright” vectors (this phenomenon was discussed as a possible model of excitation of quantum coherence in quantum photosynthesis). Thus quantum transport and excitation of dark states are competing processes; “dark” states can be considered as a result of leakage of quantum states in a quantum thermodynamic machine which performs the quantum transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. F. Abasto, M. Mohseni, S. Lloyd, and P. Zanardi, “Exciton diffusion length in complex quantum systems: the effects of disorder and environmental fluctuations on symmetry-enhanced supertransfer,” Philos. Trans. R. Soc. London A: Math. Phys. Eng. Sci. 370, 3750–3770 (2012).

    Article  Google Scholar 

  2. L. Accardi, K. Imafuku, and S. V. Kozyrev, “Interaction of 3-level atom with radiation,” Opt. Spectrosc. 94 (6), 904–910 (2003).

    Article  Google Scholar 

  3. L. Accardi and S. Kozyrev, “Lectures on quantum interacting particle systems,” in Quantum Interacting Particle Systems: Lecture Notes of the Volterra–CIRM Int. Sch., Trento, 2000 (World Scientific, Hackensack, NJ, 2002), QP–PQ: Quantum Probab. White Noise Anal. 14, pp. 1–195.

    Chapter  Google Scholar 

  4. L. Accardi, S. V. Kozyrev, and A. N. Pechen, “Coherent quantum control of Λ-atoms through the stochastic limit,” in Quantum Information and Computing, Ed. by L. Accardi, M. Ohya, and N. Watanabe (World Scientific, Hackensack, NJ, 2006), QP–PQ: Quantum Probab. White Noise Anal. 19, pp. 1–17; arXiv: quant-ph/0403100.

    Chapter  Google Scholar 

  5. L. Accardi, Y. G. Lu, and I. Volovich, Quantum Theory and Its Stochastic Limit (Springer, Berlin, 2002).

    Book  MATH  Google Scholar 

  6. G. G. Amosov and S. N. Filippov, “Spectral properties of reduced fermionic density operators and parity superselection rule,” Quantum Inf. Process. 16 (1), 2 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Ya. Aref’eva, “Formation time of quark–gluon plasma in heavy-ion collisions in the holographic shock wave model,” Teor. Mat. Fiz. 184 (3), 398–417 (2015) [Theor. Math. Phys. 184, 1239–1255 (2015)]; arXiv: 1503.02185 [hep-th].

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Aref’eva, “Multiplicity and thermalization time in heavy-ions collisions,” EPJ Web Conf. 125, 01007 (2016).

    Article  Google Scholar 

  9. I. Ya. Aref’eva and M. A. Khramtsov, “AdS/CFT prescription for angle-deficit space and winding geodesics,” J. High Energy Phys. 2016 (4), 121 (2016); arXiv: 1601.02008 [hep-th].

    MathSciNet  Google Scholar 

  10. I. Aref’eva and I. Volovich, “Holographic photosynthesis,” arXiv: 1603.09107 [hep-th].

  11. I. Ya. Aref’eva, I. V. Volovich, and S. V. Kozyrev, “Stochastic limit method and interference in quantum manyparticle systems,” Teor. Mat. Fiz. 183 (3), 388–408 (2015) [Theor. Math. Phys. 183, 782–799 (2015)].

    Article  Google Scholar 

  12. C.-K. Chan, G.-D. Lin, S. F. Yelin, and M. D. Lukin, “Quantum interference between independent reservoirs in open quantum systems,” Phys. Rev. A 89 (4), 042117 (2014).

    Article  Google Scholar 

  13. R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).

    Article  MATH  Google Scholar 

  14. G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446, 782–786 (2007).

    Article  Google Scholar 

  15. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84 (22), 5094–5097 (2000); arXiv: quant-ph/0001094.

    Article  Google Scholar 

  16. A. S. Holevo, “Gaussian optimizers and the additivity problem in quantum information theory,” Usp. Mat. Nauk 70 (2), 141–180 (2015) [Russ. Math. Surv. 70, 331–367 (2015)].

    MathSciNet  MATH  Google Scholar 

  17. S. V. Kozyrev, “Ultrametricity in the theory of complex systems,” Teor. Mat. Fiz. 185 (2), 346–360 (2015) [Theor. Math. Phys. 185, 1665–1677 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  18. S. V. Kozyrev, A. A. Mironov, A. E. Teretenkov, and I. V. Volovich, “Flows in non-equilibrium quantum systems and quantum photosynthesis,” Infin. Dimens. Anal. Quantum Probab. Relat. Top. 20 (4), 1750021 (2017); arXiv: 1612.00213 [quant-ph].

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Lloyd and M. Mohseni, “Symmetry-enhanced supertransfer of delocalized quantum states,” New J. Phys. 12 (7), 075020 (2010); arXiv: 1005.2579 [quant-ph].

    Article  Google Scholar 

  20. M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, “Environment-assisted quantum walks in photosynthetic energy transfer,” J. Chem. Phys. 129 (17), 174106 (2008).

    Article  Google Scholar 

  21. R. Monshouwer, M. Abrahamsson, F. van Mourik, and R. van Grondelle, “Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems,” J. Phys. Chem. B 101 (37), 7241–7248 (1997).

    Article  Google Scholar 

  22. M. Ohya and I. Volovich, Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano-and Bio-systems (Springer, New York, 2011).

    Book  MATH  Google Scholar 

  23. A. Olaya-Castro, C. F. Lee, F. F. Olsen, and N. F. Johnson, “Efficiency of energy transfer in a light-harvesting system under quantum coherence,” Phys. Rev. B 78 (8), 085115 (2008).

    Article  Google Scholar 

  24. A. N. Pechen and N. B. Il’in, “Existence of traps in the problem of maximizing quantum observable averages for a qubit at short times,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 289, 227–234 (2015) [Proc. Steklov Inst. Math. 289, 213–220 (2015)].

    MathSciNet  MATH  Google Scholar 

  25. A. N. Pechen and N. B. Il’in, “On the problem of maximizing the transition probability in an n-level quantum system using nonselective measurements,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 294, 248–255 (2016) [Proc. Steklov Inst. Math. 294, 233–240 (2016)].

    MathSciNet  MATH  Google Scholar 

  26. A. Pechen and N. Il’in, “Control landscape for ultrafast manipulation by a qubit,” J. Phys. A: Math. Theor. 50 (7), 075301 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Pechen and A. Trushechkin, “Measurement-assisted Landau–Zener transitions,” Phys. Rev. A 91 (5), 052316 (2015).

    Article  Google Scholar 

  28. Quantum Effects in Biology, Ed. by M. Mohseni, Y. Omar, G. S. Engel, and M. B. Plenio (Cambridge Univ. Press, Cambridge, 2014).

  29. G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, “Lessons from nature about solar light harvesting,” Nature Chem. 3, 763–774 (2011).

    Article  Google Scholar 

  30. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, Cambridge, 1997).

    Book  Google Scholar 

  31. M. E. Shirokov, “On quantum zero-error capacity,” Usp. Mat. Nauk 70 (1), 187–188 (2015) [Russ. Math. Surv. 70, 176–178 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  32. A. S. Trushechkin and I. V. Volovich, “Perturbative treatment of inter-site couplings in the local description of open quantum networks,” Europhys. Lett. 113 (3), 30005 (2016).

    Article  Google Scholar 

  33. I. V. Volovich, “Models of quantum computers and decoherence problem,” in Quantum Information: Proc. 1st Int. Conf., Nagoya, 1997 (World Scientific, Singapore, 1999), pp. 211–224; arXiv: quant-ph/9902055.

    Google Scholar 

  34. I. V. Volovich, “Cauchy–Schwarz inequality-based criteria for the non-classicality of sub-Poisson and antibunched light,” Phys. Lett. A 380 (1–2), 56–58 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  35. I. V. Volovich and S. V. Kozyrev, “Manipulation of states of a degenerate quantum system,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 294, 256–267 (2016) [Proc. Steklov Inst. Math. 294, 241–251 (2016)].

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kozyrev.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Vol. 301, pp. 144–154.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozyrev, S.V. Quantum Transport in Degenerate Systems. Proc. Steklov Inst. Math. 301, 134–143 (2018). https://doi.org/10.1134/S0081543818040119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543818040119

Navigation