Proceedings of the Steklov Institute of Mathematics

, Volume 299, Issue 1, pp 246–267 | Cite as

On a Diophantine Inequality with Prime Numbers of a Special Type

Article

Abstract

We consider the Diophantine inequality |p 1 c + p 2 c + p 3 c N| < (logN)E, where 1 < c < 15/14, N is a sufficiently large real number and E > 0 is an arbitrarily large constant. We prove that the above inequality has a solution in primes p1, p2, p3 such that each of the numbers p1 + 2, p2 + 2 and p3 + 2 has at most [369/(180 − 168c)] prime factors, counted with multiplicity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Baker and A. Weingartner, “A ternary Diophantine inequality over primes,” Acta Arith. 162 (2), 159–196 (2014).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    J. Brüdern and E. Fouvry, “Lagrange’s Four Squares Theorem with almost prime variables,” J. Reine Angew. Math. 454, 59–96 (1994).MathSciNetMATHGoogle Scholar
  3. 3.
    J. R. Chen, “On the representation of a larger even integer as the sum of a prime and the product of at most two primes,” Sci. Sin. 16, 157–176 (1973).MathSciNetMATHGoogle Scholar
  4. 4.
    H. Davenport, Multiplicative Number Theory, 2nd ed. (Springer, New York, 1980).CrossRefMATHGoogle Scholar
  5. 5.
    S. I. Dimitrov, “Investigation of Diophantine inequalities and arithmetic progressions with methods of number theory,” PhD Thesis (Tech. Univ., Sofia, 2016).Google Scholar
  6. 6.
    S. I. Dimitrov, “A ternary Diophantine inequality over special primes,” JP J. Algebra Number Theory Appl. 39 (3), 335–368 (2017).CrossRefMATHGoogle Scholar
  7. 7.
    S. I. Dimitrov and T. L. Todorova, “Diophantine approximation by prime numbers of a special form,” Annu. Univ. Sofia, Fac. Math. Inform. 102, 71–90 (2015).MathSciNetGoogle Scholar
  8. 8.
    G. Greaves, Sieves in Number Theory (Springer, Berlin, 2001).CrossRefMATHGoogle Scholar
  9. 9.
    H. Iwaniec and E. Kowalski, Analytic Number Theory (Am. Math. Soc., Providence, RI, 2004).CrossRefMATHGoogle Scholar
  10. 10.
    A. A. Karatsuba, Basic Analytic Number Theory (Nauka, Moscow, 1983; Springer, Berlin, 1993).Google Scholar
  11. 11.
    K. Matomäki, “A Bombieri–Vinogradov type exponential sum result with applications,” J. Number Theory 129 (9), 2214–2225 (2009).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    K. Matomäki and X. Shao, “Vinogradov’s three primes theorems with almost twin primes,” Compos. Math. 153 (6), 1220–1256 (2017); arXiv: 1512.03213v1 [math.NT].MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    H. L. Montgomery, Topics in Multiplicative Number Theory (Springer, Berlin, 1971).CrossRefMATHGoogle Scholar
  14. 14.
    B. I. Segal, “On a theorem analogous to Waring’s theorem,” Dokl. Akad. Nauk SSSR, No. 2, 47–49 (1933).MATHGoogle Scholar
  15. 15.
    E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, rev. by D. R. Heath-Brown (Clarendon Press, Oxford, 1986).MATHGoogle Scholar
  16. 16.
    D. I. Tolev, “On a diophantine inequality involving prime numbers,” Acta Arith. 61 (3), 289–306 (1992).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    D. I. Tolev, “Arithmetic progressions of prime-almost-prime twins,” Acta Arith. 88 (1), 67–98 (1999).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    D. I. Tolev, “Representations of large integers as sums of two primes of special type,” in Algebraic Number Theory and Diophantine Analysis: Proc. Int. Conf., Graz, 1998 (W. de Gruyter, Berlin, 2000), pp. 485–495.Google Scholar
  19. 19.
    D. I. Tolev, “Additive problems with prime numbers of special type,” Acta Arith. 96 (11), 53–88 (2000); “Corrigendum,” Acta Arith. 105 (2), 205 (2002).MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    R. C. Vaughan, “An elementary method in prime number theory,” Acta Arith. 37 (1), 111–115 (1980).MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    I. M. Vinogradov, “Representation of an odd number as a sum of three primes,” Dokl. Akad. Nauk SSSR 15 (6–7), 291–294 (1937).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Faculty of Mathematics and InformaticsSofia University “St. Kliment Ohridski,”SofiaBulgaria

Personalised recommendations