Solution of Functional Equations Related to Elliptic Functions



Functional equations of the form f(x + y)g(xy) = Σ j=1 n α j (x)β j (y) as well as of the form f1(x + z)f2(y + z)f3(x + yz) = Σ j=1 m φ j (x, y)ψ j (z) are solved for unknown entire functions f, g j , β j : ℂ → ℂ and f1, f2, f3, ψ j : ℂ → ℂ, φ j : ℂ2 → ℂ in the cases of n = 3 and m = 4.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Bonk, “The addition theorem of Weierstrass’s sigma function,” Math. Ann. 298, 591–610 (1994).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    M. Bonk, “The characterization of theta functions by functional equations,” Abh. Math. Semin. Univ. Hamburg 65, 29–55 (1995).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    M. Bonk, “The addition formula for theta functions,” Aequationes Math. 53 (1–2), 54–72 (1997).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    V. M. Buchstaber and I. M. Krichever, “Integrable equations, addition theorems, and the Riemann–Schottky problem,” Usp. Mat. Nauk 61 (1), 25–84 (2006) [Russ. Math. Surv. 61, 19–78 (2006)].MathSciNetCrossRefGoogle Scholar
  5. 5.
    V. M. Buchstaber and D. V. Leikin, “Trilinear functional equations,” Usp. Mat. Nauk 60 (2), 151–152 (2005) [Russ. Math. Surv. 60, 341–343 (2005)].MathSciNetCrossRefGoogle Scholar
  6. 6.
    V. M. Buchstaber and D. V. Leikin, “Addition laws on Jacobian varieties of plane algebraic curves,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 251, 54–126 (2005) [Proc. Steklov Inst. Math. 251, 49–120 (2005)].Google Scholar
  7. 7.
    V. A. Bykovskii, “Hyperquasipolynomials and their applications,” Funkts. Anal. Prilozh. 50 (3), 34–46 (2016) [Funct. Anal. Appl. 50, 193–203 (2016)].MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    A. A. Illarionov, “Functional equations and Weierstrass sigma-functions,” Funkts. Anal. Prilozh. 50 (4), 43–54 (2016) [Funct. Anal. Appl. 50, 281–290 (2016)].MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    A. A. Illarionov, “Solution of a functional equation concerning trilinear differential operators,” Dal’nevost. Mat. Zh. 16 (2), 169–180 (2016).MathSciNetMATHGoogle Scholar
  10. 10.
    S. Janson, J. Peetre, and R. Wallstén, “A new look on Hankel forms over Fock space,” Stud. Math. 95 (1), 33–41 (1989).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    A. Járai and W. Sander, “On the characterization of Weierstrass’s sigma function,” in Functional Equations— Results and Advances (Kluwer, Dordrecht, 2002), Adv. Math. 3, pp. 29–79.Google Scholar
  12. 12.
    T. Levi-Civita, “Sulle funzioni che ammettono una formula d’addizione del tipo f(x + y) =Σi=1 n X i(x)Y i(y),” Rom. Accad. Lincei, Rend., Ser. 5, 22 (2), 181–183 (1913).MATHGoogle Scholar
  13. 13.
    D. Mumford, Tata Lectures on Theta. I (Birkhäuser, Boston, 1983).CrossRefMATHGoogle Scholar
  14. 14.
    G. Peano, “Sur le déterminant wronskien,” Mathesis 9, 110–112 (1889).MATHGoogle Scholar
  15. 15.
    R. Rochberg and L. A. Rubel, “A functional equation,” Indiana Univ. Math. J. 41 (2), 363–376 (1992).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    S. Stoilow, Teoria funcţiilor de o variabilă complexă, Vol. 1: Notiuni si principii fundamentale (Ed. Acad. Repub. Populare Rom., Bucuresti, 1954).Google Scholar
  17. 17.
    E. T. Whittaker and G. N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions (Univ. Press, Cambridge, 1927).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Khabarovsk Division of the Institute of Applied MathematicsFar Eastern Branch of the Russian Academy of SciencesKhabarovskRussia

Personalised recommendations