On Complete Rational Arithmetic Sums of Polynomial Values

Article
  • 1 Downloads

Abstract

New estimates are obtained for complete arithmetic sums of polynomial values (exponential sums, sums of Dirichlet characters, and sums of Bernoulli polynomials) in the case where the derivative of the polynomial in the argument of the sum has no multiple roots modulo primes dividing the period of these arithmetic sums.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. I. Arkhipov, Selected Works (Orlovsk. Gos. Univ., Orel, 2013) [in Russian].MATHGoogle Scholar
  2. 2.
    G. I. Arkhipov, V. N. Chubarikov, and A. A. Karatsuba, Trigonometric Sums in Number Theory and Analysis (W. de Gruyter, Berlin, 2004), de Gruyter Expo. Math. 39.MATHGoogle Scholar
  3. 3.
    V. N. Chubarikov, “Elementary derivation of an estimate for the complete rational arithmetic sum of a polynomial,” Chebyshev. Sb. 16 (3), 450–459 (2015).MathSciNetGoogle Scholar
  4. 4.
    V. N. Chubarikov, “The rate of convergence of the average value of the complete rational arithmetic sums,” Chebyshev. Sb. 16 (4), 303–318 (2015).MathSciNetGoogle Scholar
  5. 5.
    V. N. Chubarikov, “Arithmetic sums of polynomial values,” Dokl. Akad. Nauk 466 (2), 152–153 (2016) [Dokl. Math. 93 (1), 31–32 (2016)].MathSciNetMATHGoogle Scholar
  6. 6.
    V. N. Chubarikov, “Complete rational arithmetic sums,” Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., No. 1, 60–61 (2016) [Moscow Univ. Math. Bull. 71, 43–44 (2016)].MATHGoogle Scholar
  7. 7.
    L.-K. Hua, Selected Papers (Springer, New York, 1983).MATHGoogle Scholar
  8. 8.
    A. A. Karatsuba, Basic Analytic Number Theory (Nauka, Moscow, 1983; Springer, Berlin, 1993).Google Scholar
  9. 9.
    A. G. Postnikov, “On the sum of characters with respect to a modulus equal to a power of a prime number,” Izv. Akad. Nauk SSSR, Ser. Mat. 19 (1), 11–16 (1955).MathSciNetGoogle Scholar
  10. 10.
    A. G. Postnikov, Selected Works (Fizmatlit, Moscow, 2005) [in Russian].MATHGoogle Scholar
  11. 11.
    D. O. Shklyarskii, G. M. Adel’son-Vel’skii, N. N. Chentsov, A. M. Yaglom, and I. M. Yaglom, Selected Problems and Theorems in Elementary Mathematics, Part 1: Arithmetic and Algebra (Gostekhizdat, Moscow, 1950) [in Russian].Google Scholar
  12. 12.
    I. M. Vinogradov, The Method of Trigonometric Sums in Number Theory, 2nd ed. (Nauka, Moscow, 1980) [in Russian].MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Faculty of Mechanics and MathematicsMoscow State UniversityMoscowRussia

Personalised recommendations