On Anatolii Alekseevich Karatsuba’s Works Written in the 1990s and 2000s

Article

Abstract

An overview is given of the scientific results obtained by Anatolii Alekseevich Karatsuba between the early 1990s and 2008.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.-P. Arguin, D. Belius, P. Bourgade, M. Radziwiłł, and K. Soundararajan, “Maximum of the Riemann zeta function on a short interval of the critical line,” arXiv: 1612.08575 [math.PR].Google Scholar
  2. 2.
    G. I. Arkhipov, V. I. Blagodatskikh, V. S. Vladimirov, S. M. Voronin, O. B. Lupanov, E. F. Mishchenko, Yu. V. Prokhorov, V. N. Chubarikov, and A. B. Shidlovskii, “Anatolii Alekseevich Karatsuba (on his 60th birthday),” Usp. Mat. Nauk 53 (2), 173–176 (1998) [Russ. Math. Surv. 53, 419–422 (1998)].MATHGoogle Scholar
  3. 3.
    G. I. Arkhipov and V. N. Chubarikov, “On Professor A. A. Karatsuba’s works in mathematics,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 218, 7–19 (1997) [Proc. Steklov Inst. Math. 218, 1–14 (1997)].MATHGoogle Scholar
  4. 4.
    G. I. Arkhipov and V. N. Chubarikov, “Anatoly Alekseevich Karatsuba,” Chebyshev. Sb. 16 (1), 32–51 (2015).Google Scholar
  5. 5.
    R. Balasubramanian, “On the frequency of Titchmarsh’s phenomenon for ζ(s). IV,” Hardy–Ramanujan J. 9, 1–10 (1986).MATHGoogle Scholar
  6. 6.
    S. V. Bochkarev, “On one method of estimation of the L 1-norm of an exponential sum,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 218, 74–76 (1997) [Proc. Steklov Inst. Math. 218, 69–71 (1997)].Google Scholar
  7. 7.
    J. Bourgain and M. Z. Garaev, “Sumsets of reciprocals in prime fields and multilinear Kloosterman sums,” Izv. Ross. Akad. Nauk, Ser. Mat. 78 (4), 19–72 (2014) [Izv. Math. 78, 656–707 (2014)].MATHGoogle Scholar
  8. 8.
    J. Bourgain, M. Z. Garaev, S. V. Konyagin, and I. E. Shparlinski, “On congruences with products of variables from short intervals and applications,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 280, 67–96 (2013) [Proc. Steklov Inst. Math. 280, 61–90 (2013)].MATHGoogle Scholar
  9. 9.
    R. N. Boyarinov, “On the rate of convergence to the limit exponential distribution,” Chebyshev. Sb. 6 (2), 94–99 (2005).MATHGoogle Scholar
  10. 10.
    R. N. Boyarinov, “On the rate of convergence of distributions of random variables,” Dokl. Akad. Nauk 435 (3), 295–297 (2010) [Dokl. Math. 82 (3), 896–898 (2010)].MATHGoogle Scholar
  11. 11.
    R. N. Boyarinov, “On fractional moments of random variables,” Dokl. Akad. Nauk 436 (3), 299–301 (2011) [Dokl. Math. 83 (1), 53–55 (2011)].MATHGoogle Scholar
  12. 12.
    R. N. Boyarinov, “On the value distribution of the Riemann zeta-function,” Dokl. Akad. Nauk 438 (1), 14–16 (2011) [Dokl. Math. 83 (3), 290–292 (2011)].MATHGoogle Scholar
  13. 13.
    R. N. Boyarinov, “Probabilistic methods in the theory of the Riemann zeta-function,” Teor. Veroyatn. Primen. 56 (2), 209–223 (2011) [Theory Probab. Appl. 56, 181–192 (2012)].Google Scholar
  14. 14.
    R. N. Boyarinov, “Rate of convergence to limit distribution,” Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., No. 2, 19–27 (2011) [Moscow Univ. Math. Bull. 66 (2), 70–76 (2011)].MATHGoogle Scholar
  15. 15.
    R. N. Boyarinov, “Probabilistic methods in number theory and applications to the theory of the argument of the Riemann zeta-function,” Doctoral (Phys.–Math.) Dissertation (Moscow State Univ., Moscow, 2012).Google Scholar
  16. 16.
    R. N. Boyarinov, V. N. Chubarikov, and I. S. Ngongo, “Asymptotic formulas for fractional moments of special sums,” Chebyshev. Sb. 4 (4), 173–183 (2003).MATHGoogle Scholar
  17. 17.
    M.-C. Chang, “On a question of Davenport and Lewis and new character sum bounds in finite fields,” Duke Math. J. 145 (3), 409–442 (2008).MATHGoogle Scholar
  18. 18.
    M.-C. Chang, “Partial quotients and equidistribution,” C. R., Math., Acad. Sci. Paris 349 (13–14), 713–718 (2011).MATHGoogle Scholar
  19. 19.
    M. E. Changa, “Numbers whose prime divisors lie in special intervals,” Izv. Ross. Akad. Nauk, Ser. Mat. 67 (4), 213–224 (2003) [Izv. Math. 67, 837–848 (2003)].MATHGoogle Scholar
  20. 20.
    M. E. Changa, “On zeros of real trigonometric sums,” Mat. Zametki 76 (5), 792–797 (2004) [Math. Notes 76, 738–742 (2004)].MATHGoogle Scholar
  21. 21.
    M. E. Changa, “Lower bounds for the Riemann zeta function on the critical line,” Mat. Zametki 76 (6), 922–927 (2004) [Math. Notes 76, 859–864 (2004)].MATHGoogle Scholar
  22. 22.
    M. E. Changa, “On a function-theoretic inequality,” Usp. Mat. Nauk 60 (3), 181–182 (2005) [Russ. Math. Surv. 60, 564–565 (2005)].Google Scholar
  23. 23.
    M. E. Changa, “On the quantity of numbers of special form depending on the parity of the number of their different prime divisors,” Mat. Zametki 97 (6), 930–935 (2015) [Math. Notes 97, 941–945 (2015)].MATHGoogle Scholar
  24. 24.
    M. E. Changa, “A problem involving integers all of whose prime divisors belong to given arithmetic progressions,” Usp. Mat. Nauk 71 (4), 191–192 (2016) [Russ. Math. Surv. 71, 790–792 (2016)].MATHGoogle Scholar
  25. 25.
    M. E. Changa, “On the integers whose number of prime factors belongs to given class of residues,” in Conference to the Memory of Anatoly Alekseevich Karatsuba on Number Theory and Applications, Moscow, Jan. 28–30, 2016: Abstracts (Moscow, 2016), p. 43.Google Scholar
  26. 26.
    P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory (Enseign. Math., Univ. Genève, Genève, 1980), Monogr. Enseign. Math. 28.MATHGoogle Scholar
  27. 27.
    S.-J. Feng, “On Karatsuba conjecture and the Lindelöf hypothesis,” Acta Arith. 114 (3), 295–300 (2004).MATHGoogle Scholar
  28. 28.
    J. Friedlander and H. Iwaniec, “The Brun–Titchmarsh theorem,” in Analytic Number Theory: Proc. 39th Taniguchi Int. Symp. Math., Kyoto, 1996, Ed. by Y. Motohashi (Cambridge Univ. Press, Cambridge, 1997), LMS Lect. Note Ser. 247, pp. 85–93.Google Scholar
  29. 29.
    J. Friedlander and H. Iwaniec, “The polynomial X 2 + Y 4 captures its primes,” Ann. Math., Ser. 2, 148 (3), 945–1040 (1998).MATHGoogle Scholar
  30. 30.
    J. B. Friedlander and H. Iwaniec, “Reducing character sums to Kloosterman sums,” Mat. Zametki 88 (3), 476–480 (2010) [Math. Notes 88, 440–443 (2010)].MATHGoogle Scholar
  31. 31.
    P. X. Gallagher and H. L. Montgomery, “A note on Burgess’s estimate,” Mat. Zametki 88 (3), 355–364 (2010) [Math. Notes 88, 321–329 (2010)].MATHGoogle Scholar
  32. 32.
    M. Z. Garaev, “Concerning the Karatsuba conjectures,” Taiwanese J. Math. 6 (4), 573–580 (2002).MATHGoogle Scholar
  33. 33.
    M. Z. Garaev, “Character sums in short intervals and the multiplication table modulo a large prime,” Monatsh. Math. 148 (2), 127–138 (2006).MATHGoogle Scholar
  34. 34.
    M. Z. Garaev and K.-L. Kueh, “Distribution of special sequences modulo a large prime,” Int. J. Math. Math. Sci. 2003 (50), 3189–3194 (2003).MATHGoogle Scholar
  35. 35.
    M. Z. Garaev and A. A. Karatsuba, “On character sums and the exceptional set of a congruence problem,” J. Number Theory 114 (1), 182–192 (2005).MATHGoogle Scholar
  36. 36.
    M. Z. Garaev and A. A. Karatsuba, “New estimates of double trigonometric sums with exponential functions,” Arch. Math. 87 (1), 33–40 (2006).MATHGoogle Scholar
  37. 37.
    M. Z. Garaev and A. A. Karatsuba, “The representation of residue classes by products of small integers,” Proc. Edinb. Math. Soc., Ser. 2, 50 (2), 363–375 (2007).MATHGoogle Scholar
  38. 38.
    A. Ghosh, “On Riemann’s zeta-function—sign changes of S(T ),” in Recent Progress in Analytic Number Theory: Durham Symp. 1979 (Academic, London, 1981), Vol. 1, pp. 25–46.MATHGoogle Scholar
  39. 39.
    A. Ghosh, “On the Riemann zeta-function—mean value theorems and the distribution of |S(T| ),” J. Number Theory 17 (1), 93–102 (1983).MATHGoogle Scholar
  40. 40.
    A. A. Glibichuk, “Combinational properties of sets of residues modulo a prime and the Erdős–Graham problem,” Mat. Zametki 79 (3), 384–395 (2006) [Math. Notes 79, 356–365 (2006)].MATHGoogle Scholar
  41. 41.
    S. A. Gritsenko, “On an additive problem and its application to the problem of distribution of zeros of linear combinations of Hecke L-functions on the critical line,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 276, 96–108 (2012) [Proc. Steklov Inst. Math. 276, 90–102 (2012)].MATHGoogle Scholar
  42. 42.
    S. A. Gritsenko, “On the zeros of the Davenport–Heilbronn function lying on the critical line,” Mat. Zametki 100 (5), 774–778 (2016) [Math. Notes 101, 166–170 (2017)].Google Scholar
  43. 43.
    S. A. Gritsenko, “On the zeros of the Davenport–Heilbronn function,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 296, 72–94 (2017) [Proc. Steklov Inst. Math. 296, 65–87 (2017)].MATHGoogle Scholar
  44. 44.
    S. A. Gritsenko and D. B. Demidov, “On zeros of linear combinations of functions of special form related to the Hecke L-functions of imaginary quadratic fields on short intervals,” Sovrem. Probl. Mat. 17, 164–178 (2013) [Proc. Steklov Inst. Math. 282 (Suppl. 1), S150–S164 (2013)].MATHGoogle Scholar
  45. 45.
    S. A. Gritsenko, E. A. Karatsuba, M. A. Korolev, I. S. Rezvyakova, D. I. Tolev, and M. E. Changa, “Scientific achievements of Anatolii Alekseevich Karatsuba,” Sovrem. Probl. Mat. 16, 7–30 (2012) [Proc. Steklov Inst. Math. 280 (Suppl. 2), S1–S22 (2013)].MATHGoogle Scholar
  46. 46.
    G. H. Hardy and J. E. Littlewood, “The zeros of Riemann’s zeta-function on the critical line,” Math. Z. 10, 283–317 (1921).MATHGoogle Scholar
  47. 47.
    C. Hooley, “On the greatest prime factor of a cubic polynomial,” J. Reine Angew. Math. 303/304, 21–50 (1978).Google Scholar
  48. 48.
    A. E. Ingham, The Distribution of Prime Numbers (Univ. Press, Cambridge, 1932).MATHGoogle Scholar
  49. 49.
    H. Iwaniec and E. Kowalski, Analytic Number Theory (Am. Math. Soc., Providence, RI, 2004), AMS Colloq. Publ. 53.MATHGoogle Scholar
  50. 50.
    W. B. Jurkat and J. W. van Horne, “The proof of the central limit theorem for theta sums,” Duke Math. J. 48 (4), 873–885 (1981).MATHGoogle Scholar
  51. 51.
    A. B. Kalmynin, “On the first moment of the Gauss sum,” Mat. Zametki 99 (3), 470–476 (2016) [Math. Notes 99, 470–476 (2016)].MATHGoogle Scholar
  52. 52.
    A. A. Karatsuba, “Estimates of trigonometric sums of a special form and their applications,” Dokl. Akad. Nauk SSSR 137 (3), 513–514 (1961) [Sov. Math., Dokl. 2, 304–305 (1961)].MATHGoogle Scholar
  53. 53.
    A. A. Karatsuba, “Sums of characters over prime numbers,” Izv. Akad. Nauk SSSR, Ser. Mat. 34 (2), 299–321 (1970) [Math. USSR, Izv. 4 (2), 303–326 (1970)].MATHGoogle Scholar
  54. 54.
    A. A. Karatsuba, “Distribution of power residues and nonresidues in additive sequences,” Dokl. Akad. Nauk SSSR 196 (4), 759–760 (1971) [Sov. Math., Dokl. 12, 235–236 (1971)].MATHGoogle Scholar
  55. 55.
    A. A. Karatsuba, “On a certain arithmetic sum,” Dokl. Akad. Nauk SSSR 199 (4), 770–772 (1971) [Sov. Math., Dokl. 12, 1172–1174 (1971)].MATHGoogle Scholar
  56. 56.
    A. A. Karatsuba, “Uniform approximation of the remainder term in the Dirichlet divisor problem,” Izv. Akad. Nauk SSSR, Ser. Mat. 36 (3), 475–483 (1972) [Math. USSR, Izv. 6 (3), 467–475 (1972)].MATHGoogle Scholar
  57. 57.
    A. A. Karatsuba, Basic Analytic Number Theory (Nauka, Moscow, 1983; Springer, Berlin, 1993).Google Scholar
  58. 58.
    A. A. Karatsuba, “Sums of Legendre symbols of polynomials of second degree over prime numbers,” Izv. Akad. Nauk SSSR, Ser. Mat. 42 (2), 315–324 (1978) [Math. USSR, Izv. 12 (2), 299–308 (1978)].MATHGoogle Scholar
  59. 59.
    A. A. Karatsuba, “On the zeros of the function ζ(s) on short intervals of the critical line,” Izv. Akad. Nauk SSSR, Ser. Mat. 48 (3), 569–584 (1984) [Math. USSR, Izv. 24 (3), 523–537 (1985)].MATHGoogle Scholar
  60. 60.
    A. A. Karatsuba, “The distribution of zeros of the function ζ(1/2 + it),” Izv. Akad. Nauk SSSR, Ser. Mat. 48 (6), 1214–1224 (1984) [Math. USSR, Izv. 25 (3), 519–529 (1985)].MATHGoogle Scholar
  61. 61.
    A. A. Karatsuba, “The distribution of pairs of quadratic residues and nonresidues of a special form,” Izv. Akad. Nauk SSSR, Ser. Mat. 51 (5), 994–1009 (1987) [Math. USSR, Izv. 31 (2), 307–323 (1988)].MATHGoogle Scholar
  62. 62.
    A. A. Karatsuba, “Approximation of exponential sums by shorter ones,” Proc. Indian Acad. Sci., Math. Sci. 97 (1–3), 167–178 (1987).MATHGoogle Scholar
  63. 63.
    A. A. Karatsuba, “Zeros of certain Dirichlet series,” Usp. Mat. Nauk 45 (1), 175–176 (1990) [Russ. Math. Surv. 45 (1), 207–208 (1990)].MATHGoogle Scholar
  64. 64.
    A. A. Karatsuba, “On the zeros of the Davenport–Heilbronn function lying on the critical line,” Izv. Akad. Nauk SSSR, Ser. Mat. 54 (2), 303–315 (1990) [Math. USSR, Izv. 36 (2), 311–324 (1991)].MATHGoogle Scholar
  65. 65.
    A. A. Karatsuba, “Zeros of linear combinations of Z-functions corresponding to Dirichlet series,” Dokl. Akad. Nauk SSSR 317 (5), 1053–1054 (1991) [Sov. Math., Dokl. 43 (2), 589–590 (1991)].MATHGoogle Scholar
  66. 66.
    A. A. Karatsuba, “The distribution of values of Dirichlet characters on additive sequences,” Dokl. Akad. Nauk SSSR 319 (3), 543–545 (1991) [Sov. Math., Dokl. 44 (1), 145–148 (1992)].MATHGoogle Scholar
  67. 67.
    A. A. Karatsuba, “On the zeros of a special type of function connected with Dirichlet series,” Izv. Akad. Nauk SSSR, Ser. Mat. 55 (3), 483–514 (1991) [Math. USSR, Izv. 38 (3), 471–502 (1992)].MATHGoogle Scholar
  68. 68.
    A. A. Karatsuba, “A refinement of theorems on the number of zeros lying on intervals of the critical line of certain Dirichlet series,” Usp. Mat. Nauk 47 (2), 193–194 (1992) [Russ. Math. Surv. 47 (2), 219–220 (1992)].MATHGoogle Scholar
  69. 69.
    A. A. Karatsuba, “On zeros of the Davenport–Heilbronn function,” in Proc. Amalfi Conf. on Analytic Number Theory, Maiori (Italy), 1989, Ed. by E. Bombieri et al. (Univ. Salerno, Salerno, 1992), pp. 271–293.Google Scholar
  70. 70.
    A. A. Karatsuba, “The distribution of inverses in a residue ring modulo a given modulus,” Dokl. Akad. Nauk 333 (2), 138–139 (1993) [Russ. Acad. Sci., Dokl. Math. 48 (3), 452–454 (1994)].MATHGoogle Scholar
  71. 71.
    A. A. Karatsuba, “On the zeros of a class of functions generated by the Hurwitz function,” Usp. Mat. Nauk 48 (5), 175–176 (1993) [Russ. Math. Surv. 48 (5), 175–176 (1993)].MATHGoogle Scholar
  72. 72.
    A. A. Karatsuba, “On the zeros of arithmetic Dirichlet series without Euler product,” Izv. Ross. Akad. Nauk, Ser. Mat. 57 (5), 3–14 (1993) [Russ. Acad. Sci., Izv. Math. 43 (2), 193–203 (1994)].MATHGoogle Scholar
  73. 73.
    A. A. Karatsuba, “A new approach to the problem of the zeros of some Dirichlet series,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 207, 180–196 (1994) [Proc. Steklov Inst. Math. 207, 163–177 (1995)].MATHGoogle Scholar
  74. 74.
    A. A. Karatsuba, “Zeros of arithmetic Dirichlet series,” Math. Slovaca 44 (5), 633–649 (1994).MATHGoogle Scholar
  75. 75.
    A. A. Karatsuba, Complex Analysis in Number Theory (CRC Press, Boca Raton, FL, 1995).MATHGoogle Scholar
  76. 76.
    A. A. Karatsuba, “Fractional parts of functions of a special form,” Izv. Ross. Akad. Nauk, Ser. Mat. 59 (4), 61–80 (1995) [Izv. Math. 59, 721–740 (1995)].MATHGoogle Scholar
  77. 77.
    A. A. Karatsuba, “Analogues of Kloosterman sums,” Izv. Ross. Akad. Nauk, Ser. Mat. 59 (5), 93–102 (1995) [Izv. Math. 59, 971–981 (1995)].Google Scholar
  78. 78.
    A. A. Karatsuba, “Sums of fractional parts of functions of a special form,” Dokl. Akad. Nauk 349 (3), 302 (1996) [Dokl. Math. 54 (1), 541 (1996)].MATHGoogle Scholar
  79. 79.
    A. A. Karatsuba, “On the function S(t),” Izv. Ross. Akad. Nauk, Ser. Mat. 60 (5), 27–56 (1996) [Izv. Math. 60, 901–931 (1996)].MATHGoogle Scholar
  80. 80.
    A. A. Karatsuba, “Density theorem and the behavior of the argument of the Riemann zeta function,” Mat. Zametki 60 (3), 448–449 (1996) [Math. Notes 60, 333–334 (1996)].Google Scholar
  81. 81.
    A. A. Karatsuba, “Analogues of incomplete Kloosterman sums and their applications,” Tatra Mt. Math. Publ. 11, 89–120 (1997).MATHGoogle Scholar
  82. 82.
    A. A. Karatsuba, “Additive congruences,” Izv. Ross. Akad. Nauk, Ser. Mat. 61 (2), 81–94 (1997) [Izv. Math. 61, 317–329 (1997)].MATHGoogle Scholar
  83. 83.
    A. A. Karatsuba, “Regular sets in residual classes,” Mat. Zametki 64 (2), 224–228 (1998) [Math. Notes 64, 190–193 (1998)].Google Scholar
  84. 84.
    A. A. Karatsuba, “An estimate of the L 1-norm of an exponential sum,” Mat. Zametki 64 (3), 465–468 (1998) [Math. Notes 64, 401–404 (1996)].Google Scholar
  85. 85.
    A. A. Karatsuba, “Kloosterman double sums,” Mat. Zametki 66 (5), 682–687 (1999) [Math. Notes 66, 565–569 (1999)].MATHGoogle Scholar
  86. 86.
    A. A. Karatsuba, “The multidimensional Dirichlet divisor problem and zero free regions for the Riemann zeta function,” Funct. Approximatio, Comment. Math. 28, 131–140 (2000).MATHGoogle Scholar
  87. 87.
    A. A. Karatsuba, “Weighted character sums,” Izv. Ross. Akad. Nauk, Ser. Mat. 64 (2), 29–42 (2000) [Izv. Math. 64, 249–263 (2000)].MATHGoogle Scholar
  88. 88.
    A. A. Karatsuba, “On the relationship between the multidimensional Dirichlet divisor problem and the boundary of zeros of ζ(s),” Mat. Zametki 70 (3), 477–480 (2001) [Math. Notes 70, 432–435 (2001)].Google Scholar
  89. 89.
    A. A. Karatsuba, “On lower bounds for the Riemann zeta-function,” Dokl. Akad. Nauk 376 (1), 15–16 (2001) [Dokl. Math. 63 (1), 9–10 (2001)].MATHGoogle Scholar
  90. 90.
    A. A. Karatsuba, “Lower bounds for the maximum modulus of ζ(s) in small domains of the critical strip,” Mat. Zametki 70 (5), 796–797 (2001) [Math. Notes 70, 724–726 (2001)].Google Scholar
  91. 91.
    A. A. Karatsuba, “On fractional parts of rapidly growing functions,” Izv. Ross. Akad. Nauk, Ser. Mat. 65 (4), 89–110 (2001) [Izv. Math. 65, 727–748 (2001)].MATHGoogle Scholar
  92. 92.
    A. A. Karatsuba, “Fractional moments and zeros of ζ(s) on the critical line,” Mat. Zametki 72 (4), 502–508 (2002) [Math. Notes 72, 466–472 (2002)].Google Scholar
  93. 93.
    A. A. Karatsuba, “On zeros of trigonometric sums,” Dokl. Akad. Nauk 387 (1), 11–12 (2002) [Dokl. Math. 66 (3), 309–310 (2002)].MATHGoogle Scholar
  94. 94.
    A. A. Karatsuba, “Omega theorems for zeta sums,” Mat. Zametki 73 (2), 228–233 (2003) [Math. Notes 73, 212–217 (2003)].MATHGoogle Scholar
  95. 95.
    A. A. Karatsuba, “Zeros and local extrema of trigonometric sums,” Probl. Peredachi Inf. 39 (1), 88–102 (2003) [Probl. Inf. Transm. 39, 78–91 (2003)].MATHGoogle Scholar
  96. 96.
    A. A. Karatsuba, “Teoria dei numeri,” in Storia della Scienza (Inst. Encicl. Ital., Rome, 2003), Vol. 9, pp. 873–881.Google Scholar
  97. 97.
    A. A. Karatsuba, “On the Riemann asymptotic formula for π(x),” Dokl. Akad. Nauk 396 (5), 595–596 (2004) [Dokl. Math. 69 (3), 423–424 (2004)].Google Scholar
  98. 98.
    A. A. Karatsuba, “Lower bounds for the maximum modulus of the Riemann zeta function on short segments of the critical line,” Izv. Ross. Akad. Nauk, Ser. Mat. 68 (6), 99–104 (2004) [Izv. Math. 68, 1157–1163 (2004)].Google Scholar
  99. 99.
    A. A. Karatsuba, “On the approximation of π(x),” Chebyshev. Sb. 5 (4), 5–20 (2004).MATHGoogle Scholar
  100. 100.
    A. A. Karatsuba, “Behavior of the function R 1(x) and its mean value,” Dokl. Akad. Nauk 404 (4), 439–442 (2005) [Dokl. Math. 72 (2), 712–715 (2005)].Google Scholar
  101. 101.
    A. A. Karatsuba, “On the number of sign changes of the function R 1(x) and its mean values,” Chebyshev. Sb. 6 (2), 163–183 (2005).MATHGoogle Scholar
  102. 102.
    A. A. Karatsuba, “Zero multiplicity and lower bound estimates of |ζ(s)|,” Funct. Approximatio, Comment. Math. 35, 195–207 (2006).MATHGoogle Scholar
  103. 103.
    A. A. Karatsuba, “Arithmetic problems in the theory of Dirichlet characters,” Usp. Mat. Nauk 63 (4), 43–92 (2008) [Russ. Math. Surv. 63, 641–690 (2008)].MATHGoogle Scholar
  104. 104.
    A. A. Karatsuba, “Nonlinear sums of characters over primes,” Dokl. Akad. Nauk 421 (2), 162–163 (2008) [Dokl. Math. 78 (1), 508–509 (2008)].MATHGoogle Scholar
  105. 105.
    A. A. Karatsuba, “A property of the set of primes as a multiplicative basis of the natural numbers,” Dokl. Akad. Nauk 439 (2), 159–162 (2011) [Dokl. Math. 84 (1), 467–470 (2011)].MATHGoogle Scholar
  106. 106.
    A. A. Karatsuba, “A property of the set of prime numbers,” Usp. Mat. Nauk 66 (2), 3–14 (2011) [Russ. Math. Surv. 66, 209–220 (2011)].MATHGoogle Scholar
  107. 107.
    A. A. Karatsuba, “Comments to my works, written by myself,” Sovrem. Probl. Mat. 17, 7–29 (2013) [Proc. Steklov Inst. Math. 282 (Suppl. 1), S1–S23 (2013)].MATHGoogle Scholar
  108. 108.
    A. A. Karatsuba, “Moscow talk: The theorem on approximation of trigonometric sum by a short one (ATS),” Chebyshev. Sb. 16 (1), 6–18 (2015).Google Scholar
  109. 109.
    A. A. Karatsuba, “Vienna talk: On the number of zeros of the Riemann zeta function in short intervals of the critical line,” Chebyshev. Sb. 16 (1), 19–31 (2015).Google Scholar
  110. 110.
    A. A. Karatsuba, “On local representation of zero by a form (talk in Chandigarh),” Sovrem. Probl. Mat. 23, 7–11 (2016) [Proc. Steklov Inst. Math. 296 (Suppl. 2), S1–S5 (2017)].Google Scholar
  111. 111.
    A. A. Karatsuba, “On zeros of certain Dirichlet series (talk in Oberwolfach),” Sovrem. Probl. Mat. 23, 12–16 (2016) [Proc. Steklov Inst. Math. 296 (Suppl. 2), S6–S10 (2017)].Google Scholar
  112. 112.
    A. A. Karatsuba, “Cosmology and zeta (talk in Moscow),” Sovrem. Probl. Mat. 23, 17–23 (2016) [Proc. Steklov Inst. Math. 296 (Suppl. 2), S11–S17 (2017)].Google Scholar
  113. 113.
    A. A. Karatsuba and E. A. Karatsuba, “Application of ATS in a quantum-optical model,” in Analysis and Mathematical Physics (Birkhäuser, Basel, 2009), Trends Math., pp. 211–232.Google Scholar
  114. 114.
    A. A. Karatsuba and E. A. Karatsuba, “A resummation formula for collapse and revival in the Jaynes–Cummings model,” J. Phys. A: Math. Theor. 42 (19), 195304 (2009).MATHGoogle Scholar
  115. 115.
    A. A. Karatsuba and E. A. Karatsuba, “On application of the functional equation of the Jacobi theta function to approximation of atomic inversion in the Jaynes–Cummings model,” Pac. J. Appl. Math. 2 (3), 223–246 (2010).MATHGoogle Scholar
  116. 116.
    A. A. Karatsuba and E. A. Karatsuba, “Physical mathematics in number theory,” Funct. Anal. Other Math. 3 (2), 113–125 (2011).MATHGoogle Scholar
  117. 117.
    A. A. Karatsuba and M. A. Korolev, “The argument of the Riemann zeta function,” Usp. Mat. Nauk 60 (3), 41–96 (2005) [Russ. Math. Surv. 60, 433–488 (2005)].MATHGoogle Scholar
  118. 118.
    A. A. Karatsuba and M. A. Korolev, “Behaviour of the argument of the Riemann zeta function on the critical line,” Usp. Mat. Nauk 61 (3), 3–92 (2006) [Russ. Math. Surv. 61, 389–482 (2006)].MATHGoogle Scholar
  119. 119.
    A. A. Karatsuba and M. A. Korolev, “A theorem on the approximation of a trigonometric sum by a shorter one,” Izv. Ross. Akad. Nauk, Ser. Mat. 71 (2), 123–150 (2007) [Izv. Math. 71, 341–370 (2007)].MATHGoogle Scholar
  120. 120.
    A. A. Karatsuba and M. A. Korolev, “Approximation of an exponential sum by a shorter one,” Dokl. Akad. Nauk 412 (2), 159–161 (2007) [Dokl. Math. 75 (1), 36–38 (2007)].MATHGoogle Scholar
  121. 121.
    A. A. Karatsuba and B. Novak, “Arithmetical problems with numbers of special type,” Mat. Zametki 66 (2), 314–317 (1999) [Math. Notes 66, 251–253 (1999)].MATHGoogle Scholar
  122. 122.
    H. D. Kloosterman, “On the representation of numbers in the form ax 2 + by 2 + cz 2 + dt 2,” Acta Math. 49, 407–464 (1926).Google Scholar
  123. 123.
    S. V. Konyagin and M. A. Korolev, “On a symmetric Diophantine equation with reciprocals,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 294, 76–86 (2016) [Proc. Steklov Inst. Math. 294, 67–77 (2016)].MATHGoogle Scholar
  124. 124.
    S. V. Konyagin and M. A. Korolev, “On irreducible solutions of an equation with reciprocals,” Mat. Sb. 208 (12), 107–123 (2017) [Sb. Math. 208 (12), doi: 10.1070/SM8801 (2017)].Google Scholar
  125. 125.
    M. A. Korolev, “Incomplete Kloosterman sums and their applications,” Izv. Ross. Akad. Nauk, Ser. Mat. 64 (6), 41–64 (2000) [Izv. Math. 64, 1129–1152 (2000)].MATHGoogle Scholar
  126. 126.
    M. A. Korolev, “The argument of the Riemann zeta function on the critical line,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 239, 215–238 (2002) [Proc. Steklov Inst. Math. 239, 202–224 (2002)].MATHGoogle Scholar
  127. 127.
    M. A. Korolev, “The argument of the Riemann zeta-function on the critical line,” Izv. Ross. Akad. Nauk, Ser. Mat. 67 (2), 21–60 (2003) [Izv. Math. 67, 225–264 (2003)].MATHGoogle Scholar
  128. 128.
    M. A. Korolev, “Short Kloosterman sums with weights,” Mat. Zametki 88 (3), 415–427 (2010) [Math. Notes 88, 374–385 (2010)].MATHGoogle Scholar
  129. 129.
    M. A. Korolev, “On large values of the Riemann zeta-function on short segments of the critical line,” Acta Arith. 166 (4), 349–390 (2014).MATHGoogle Scholar
  130. 130.
    M. A. Korolev, “Moments of trigonometric polynomials and their applications in the theory of the Riemann zeta-function,” Dokl. Akad. Nauk 456 (3), 272–274 (2014) [Dokl. Math. 89 (3), 305–397 (2014)].MATHGoogle Scholar
  131. 131.
    M. A. Korolev, “On incomplete Gaussian sums,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 290, 61–71 (2015) [Proc. Steklov Inst. Math. 290, 52–62 (2015)].MATHGoogle Scholar
  132. 132.
    M. A. Korolev, “On the large values of the Riemann zeta-function on the critical line. II,” Moscow J. Comb. Number Theory 5 (3), 60–86 (2015).MATHGoogle Scholar
  133. 133.
    M. A. Korolev, Gram’s Law in the Theory of the Riemann Zeta-Function (Mat. Inst. im. V.A. Steklova, Moscow, 2015), Part 1, Sovrem. Probl. Mat. 20 [Proc. Steklov Inst. Math. 292 (Suppl. 2) (2016)].Google Scholar
  134. 134.
    M. A. Korolev, “Methods of estimating of incomplete Kloosterman sums,” Chebyshev. Sb. 17 (4), 79–109 (2016).MATHGoogle Scholar
  135. 135.
    M. A. Korolev, “Short Kloosterman sums to powerful modulus,” Dokl. Akad. Nauk 470 (5), 505–507 (2016) [Dokl. Math. 94 (2), 561–562 (2016)].MATHGoogle Scholar
  136. 136.
    M. A. Korolev, “Karatsuba’s method for estimating Kloosterman sums,” Mat. Sb. 207 (8), 117–134 (2016) [Sb. Math. 207, 1142–1158 (2016)].MATHGoogle Scholar
  137. 137.
    M. A. Korolev, “On short Kloosterman sums modulo a prime,” Mat. Zametki 100 (6), 838–846 (2016) [Math. Notes 100, 820–827 (2016)].MATHGoogle Scholar
  138. 138.
    M. A. Korolev, “On a Diophantine inequality with reciprocals,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 299, 144–154 (2017) [Proc. Steklov Inst. Math. 299, 132–142 (2017)].Google Scholar
  139. 139.
    E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen (Teubner, Leipzig, 1909), Vol. 2.MATHGoogle Scholar
  140. 140.
    E. Landau, “Über die Anzahl der Gitterpunkte in gewissen Bereichen,” Gött. Nachr. 1912, 687–770 (1912).MATHGoogle Scholar
  141. 141.
    J. E. Littlewood, “Sur la distribution des nombres premiers,” C. R. Acad. Sci. Paris 158, 1869–1872 (1914).MATHGoogle Scholar
  142. 142.
    J. E. Littlewood, “On the zeros of the Riemann zeta-function,” Proc. Cambridge Philos. Soc. 22, 295–318 (1924).MATHGoogle Scholar
  143. 143.
    H. von Mangoldt, “Zur Verteilung der Nullstellen der Riemannschen Funktion ξ(t),” Math. Ann. 60, 1–19 (1905).Google Scholar
  144. 144.
    V. P. Maslov, “Resonance between one-particle (Bogolyubov) and two-particle series for a superfluid in a capillary,” Dokl. Akad. Nauk 404 (5), 608–611 (2005) [Dokl. Math. 72 (2), 802–805 (2005)].MATHGoogle Scholar
  145. 145.
    M. P. Mineev, L. P. Postnikova, and V. N. Chubarikov, “A. G. Postnikov’s studies in number theory (on the 80th birthday),” in A. G. Postnikov, Selected Works (Fizmatlit, Moscow, 2005), pp. 3–17 [in Russian].Google Scholar
  146. 146.
    R. Kh. Mukhutdinov, “A Diophantine equation with exponential matrix function,” Dokl. Akad. Nauk SSSR 142 (1), 36–37 (1962) [Sov. Math., Dokl. 3, 28–30 (1962)].MATHGoogle Scholar
  147. 147.
    A. D. Nadezhin, “In the mountains with Tolya Karatsuba,” Chebyshev. Sb. 16 (1), 265–280 (2015).Google Scholar
  148. 148.
    J. Nasjnudel, “On the extreme values of the Riemann zeta function on random intervals of the critical line,” arXiv: 1611.05562 [math.NT].Google Scholar
  149. 149.
    R. M. Nunes, “On two conjectures concerning squarefree numbers in arithmetic progressions,” arXiv: 1512.03648 [math.NT].Google Scholar
  150. 150.
    K. I. Oskolkov, “On functional properties of incomplete Gaussian sums,” Can. J. Math. 43, 182–212 (1993).MATHGoogle Scholar
  151. 151.
    K. Prachar, Primzahlverteilung (Springer, Berlin, 1957).MATHGoogle Scholar
  152. 152.
    M. Radziwiłł, “Large deviations in Selberg’s central limit theorem,” arXiv: 1108.5092 [math.NT].Google Scholar
  153. 153.
    I. S. Rezvyakova, “On zeros of Hecke L-functions and their linear combinations on the critical line,” Dokl. Akad. Nauk 431 (6), 741–746 (2010) [Dokl. Math. 81 (2), 303–308 (2010)].MATHGoogle Scholar
  154. 154.
    I. S. Rezvyakova, “On the zeros on the critical line of L-functions corresponding to automorphic cusp forms,” Mat. Zametki 88 (3), 456–475 (2010) [Math. Notes 88, 423–439 (2010)].MATHGoogle Scholar
  155. 155.
    I. S. Rezvyakova, “Zeros of linear combinations of Hecke L-functions on the critical line,” Izv. Ross. Akad. Nauk, Ser. Mat. 74 (6), 183–222 (2010) [Izv. Math. 74, 1277–1314 (2010)].MATHGoogle Scholar
  156. 156.
    I. S. Rezvyakova, “On the zeros of the Epstein zeta-function on the critical line,” Usp. Mat. Nauk 70 (4), 213–214 (2015) [Russ. Math. Surv. 70, 785–787 (2015)].MATHGoogle Scholar
  157. 157.
    I. S. Rezvyakova, “Selberg’s method in the problem about the zeros of linear combinations of L-functions on the critical line,” Dokl. Akad. Nauk 463 (3), 274–277 (2015) [Dokl. Math. 92 (1), 448–451 (2015)].MATHGoogle Scholar
  158. 158.
    I. S. Rezvyakova, “On the zeros of linear combinations of L-functions of degree two on the critical line. Selberg’s approach,” Izv. Ross. Akad. Nauk, Ser. Mat. 80 (3), 151–172 (2016) [Izv. Math. 80, 602–622 (2016)].MATHGoogle Scholar
  159. 159.
    I. S. Rezvyakova, “Additive problem with the coefficients of Hecke L-functions,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 296, 243–251 (2017) [Proc. Steklov Inst. Math. 296, 234–242 (2017)].MATHGoogle Scholar
  160. 160.
    H.-E. Richert, “Einführung in die Theorie der starken Rieszschen Summierbarkeit von Dirichletreihen,” Nachr. Akad. Wiss. Göttingen, II. Math.-Phys. Kl., 17–75 (1960).Google Scholar
  161. 161.
    B. Riemann, “Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse,” Monatsberichte der Berliner Akademie (1859).Google Scholar
  162. 162.
    A. Selberg, On the zeros of Riemann’s zeta-function (J. Dybwad, Oslo, 1943), Skr. Norske Vid.-Akad. Oslo. I: Mat.-Naturv. Kl. 10.MATHGoogle Scholar
  163. 163.
    A. Selberg, “On the zeros of Riemann’s zeta-function on the critical line,” Arch. Math. Naturvid. 45 (9), 101–114 (1942).MATHGoogle Scholar
  164. 164.
    A. Selberg, “Contributions to the theory of the Riemann zeta-function,” Arch. Math. Naturvid. 48 (5), 89–155 (1946).MATHGoogle Scholar
  165. 165.
    I. E. Shparlinski, “On a question of Erdős and Graham,” Arch. Math. 78 (6), 445–448 (2002).MATHGoogle Scholar
  166. 166.
    S. A. Stepanov and I. E. Shparlinski, “Estimate of trigonometric sums with rational and algebraic functions,” in Automorphic Functions and Number Theory (Dal’nevost. Otd. Akad. Nauk SSSR, Vladivostok, 1989), Part 1, pp. 5–18 [in Russian].Google Scholar
  167. 167.
    I. S. Timergaliev, “Value distributions of analogues of Kloosterman’s sums,” Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., No. 5, 37–41 (2013) [Moscow Univ. Math. Bull. 68 (5), 249–252 (2013)].MATHGoogle Scholar
  168. 168.
    E. C. Titchmarsh, “A divisor problem,” Rend. Circ. Mat. Palermo 54, 414–429 (1930).MATHGoogle Scholar
  169. 169.
    E. C. Titchmarsh, The Theory of the Riemann Zeta-Function (Clarendon, Oxford, 1951).MATHGoogle Scholar
  170. 170.
    M. Vâjâitu and A. Zaharescu, “Differences between powers of a primitive root,” Int. J. Math. Math. Sci. 29 (6), 325–331 (2002).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations