Advertisement

Inverse results on row sequences of Hermite–Padé approximation

  • Guillermo López Lagomasino
  • Yanely Zaldivar Gerpe
Article
  • 15 Downloads

Abstract

We consider row sequences of (type II) Hermite–Padé approximations with common denominator associated with a vector f of formal power expansions about the origin. In terms of the asymptotic behavior of the sequence of common denominators, we describe some analytic properties of f and restate some conjectures corresponding to questions once posed by A. A. Gonchar for row sequences of Padé approximants.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Agmon, “Sur les séries de Dirichlet,” Ann. Sci. Éc. Norm. Supér., Sér. 3, 66, 263–310 (1949).MATHGoogle Scholar
  2. 2.
    L. Bieberbach, Analytische Fortsetzung (Springer, Berlin, 1955).CrossRefMATHGoogle Scholar
  3. 3.
    J. Cacoq, B. de la Calle Ysern, and G. López Lagomasino, “Incomplete Padé approximation and convergence of row sequences of Hermite–Padé approximants,” J. Approx. Theory 170, 59–77 (2013).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    J. Cacoq, B. de la Calle Ysern, and G. López Lagomasino, “Direct and inverse results on row sequences of Hermite–Padé approximants,” Constr. Approx. 38 (1), 133–160 (2013).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    E. Fabry, “Sur les points singuliers d’une fonction donnée par son développement en série et l’impossibilité du prolongement analytique dans des cas très généraux,” Ann. Sci. Éc. Norm. Supér., Sér. 3, 13, 367–399 (1896).MATHGoogle Scholar
  6. 6.
    A. A. Gonchar, “On convergence of Padé approximants for some classes of meromorphic functions,” Mat. Sb. 97 (4), 607–629 (1975) [Math. USSR, Sb. 26, 555–575 (1975)].MathSciNetGoogle Scholar
  7. 7.
    A. A. Gonchar, “On the convergence of generalized Padé approximants of meromorphic functions,” Mat. Sb. 98 (4), 564–577 (1975) [Math. USSR, Sb. 27, 503–514 (1975)].MathSciNetGoogle Scholar
  8. 8.
    A. A. Gonchar, “Poles of rows of the Padé table and meromorphic continuation of functions,” Mat. Sb. 115 (4), 590–613 (1981) [Math. USSR, Sb. 43, 527–546 (1982)].MathSciNetMATHGoogle Scholar
  9. 9.
    A. A. Gonchar, “Rational approximation of analytic functions,” Sovrem. Probl. Mat. 1, 83–106 (2003) [Proc. Steklov Inst. Math. 272 (Suppl. 2), S44–S57 (2011)].MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    P. R. Graves-Morris and E. B. Saff, “A de Montessus theorem for vector valued rational interpolants,” in Rational Approximation and Interpolation: Proc. Conf., Tampa, FL, 1983 (Berlin, Springer, 1984), Lect. Notes Math. 1105, pp. 227–242.CrossRefGoogle Scholar
  11. 11.
    J. Hadamard, “Essai sur l’étude des fonctions données par leur développement de Taylor,” J. Math. Pures Appl., Sér. 4, 8, 101–186 (1892).MATHGoogle Scholar
  12. 12.
    S. Mandelbrojt, Dirichlet Series: Principles and Methods (D. Reidel, Dordrecht, 1972).MATHGoogle Scholar
  13. 13.
    R. de Montessus de Ballore, “Sur les fractions continues algébriques,” Bull. Soc. Math. France 30, 28–36 (1902).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    S. P. Suetin, “On poles of the mth row of a Padé table,” Mat. Sb. 120 (4), 500–504 (1983) [Math. USSR, Sb. 48, 493–497 (1984)].MathSciNetMATHGoogle Scholar
  15. 15.
    S. P. Suetin, “On an inverse problem for the mth row of the Padé table,” Mat. Sb. 124 (2), 238–250 (1984) [Math. USSR, Sb. 52, 231–244 (1985)].MathSciNetMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Guillermo López Lagomasino
    • 1
  • Yanely Zaldivar Gerpe
    • 1
  1. 1.Departamento de MatemáticasUniversidad Carlos III de MadridLeganés, MadridSpain

Personalised recommendations