On the structure of the Bochner–Martinelli residue currents

Article
  • 15 Downloads

Abstract

We study residue currents of the Bochner–Martinelli type using their relationship to the Mellin transforms of residue integrals. We present a structure formula for residue currents associated with dimension-reducing monomial mappings: they can be represented as sums of products of simple residue currents, principal value currents, and hypergeometric functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. A. Aizenberg and A. P. Yuzhakov, Integral Representations and Residues in Multidimensional Complex Analysis (Am. Math. Soc., Providence, RI, 1983), Transl. Math. Monogr. 58.Google Scholar
  2. 2.
    M. Andersson, “Residue currents and ideals of holomorphic functions,” Bull. Sci. Math. 128 (6), 481–512 (2004).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    I. A. Antipova, “Inversion of many-dimensional Mellin transforms and solutions of algebraic equations,” Mat. Sb. 198 (4), 3–20 (2007) [Sb. Math. 198, 447–463 (2007)].MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    C. A. Berenstein, R. Gay, and A. Yger, “Analytic continuation of currents and division problems,” Forum Math. 1, 15–51 (1989).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    C. A. Berenstein and A. Yger, “Analytic residue theory in the non-complete intersection case,” J. Reine Angew. Math. 527, 203–235 (2000).MathSciNetMATHGoogle Scholar
  6. 6.
    N. R. Coleff and M. E. Herrera, Les courants résiduels associés à une forme méromorphe (Springer, Berlin, 1978), Lect. Notes Math. 633.CrossRefMATHGoogle Scholar
  7. 7.
    P. Dolbeault, “About the characterization of some residue currents,” <hal-00456383> (2010); arXiv: 1002.3025 [math.CV].MATHGoogle Scholar
  8. 8.
    P. Flajolet, X. Gourdon, and P. Dumas, “Mellin transforms and asymptotics: Harmonic sums,” Theor. Comput. Sci. 144, 3–58 (1995).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    M. Passare, “Residues, currents, and their relation to ideals of holomorphic functions,” Math. Scand. 62 (1), 75–152 (1988).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    M. Passare and A. Tsikh, “Residue integrals and their Mellin transforms,” Can. J. Math. 47 (5), 1037–1050 (1995).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    M. Passare, A. Tsikh, and A. Yger, “Residue currents of the Bochner–Martinelli type,” Publ. Mat. 44 (1), 85–117 (2000).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    H. Samuelsson, “Regularizations of products of residue and principal value currents,” J. Funct. Anal. 239 (2), 566–593 (2006).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    A. Shchuplev, A. Tsikh, and A. Yger, “Residual kernels with singularities on coordinate planes,” Tr. Mat. Inst. im. V.A. Steklova 253, 277–295 (2006) [Proc. Steklov Inst. Math. 253, 256–274 (2006)].MathSciNetMATHGoogle Scholar
  14. 14.
    A. K. Tsikh, Multidimensional Residues and Their Applications (Am. Math. Soc., Providence, RI, 1992), Transl. Math. Monogr. 103.MATHGoogle Scholar
  15. 15.
    A. Tsikh and A. Yger, “Residue currents,” J. Math. Sci. 120 (6), 1916–1971 (2004).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    E. Wulcan, “Residue currents of monomial ideals,” Indiana Univ. Math. J. 56 (1), 365–388 (2007).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations