Skip to main content
Log in

Emergence and non-typicality of the finiteness of the attractors in many topologies

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We introduce the notion of emergence for a dynamical system and conjecture the local typicality of super complex ones. Then, as part of this program, we provide sufficient conditions for an open set of C d-families of C r-dynamics to contain a Baire generic set formed by families displaying infinitely many sinks at every parameter, for all 1 ≤ dr ≤ ∞ and d < ∞ and two different topologies on families. In particular, the case d = r = 1 is new.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Anosov, Geodesic Flows on Closed Riemann Manifolds with Negative Curvature (Nauka, Moscow, 1967), Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 90 [Proc. Steklov Inst. Math. 90 (1967)].

    MATH  Google Scholar 

  2. M. Asaoka, “Hyperbolic sets exhibiting C1-persistent homoclinic tangency for higher dimensions,” Proc. Am. Math. Soc. 136 (2), 677–686 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Benedicks and L. Carleson, “The dynamics of the Hénon map,” Ann. Math., Ser. 2, 133 (1), 73–169 (1991).

    Article  MATH  Google Scholar 

  4. M. Benedicks and L.-S. Young, “Sinai–Bowen–Ruelle measures for certain Hénon maps,” Invent. Math. 112 (3), 541–576 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Berger, “Abundance of non-uniformly hyperbolic Hénon like endomorphisms,” arXiv: 0903.1473 [math.DS].

  6. P. Berger, “Generic family with robustly infinitely many sinks,” Invent. Math. 205 (1), 121–172 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Berger, “Corrigendum to ‘Generic family with robustly infinitely many sinks’,” Preprint (Univ. Paris 13, 2016), https://www.math.univ-paris13.fr/~berger/Corrigendum.pdf

    MATH  Google Scholar 

  8. P. Berger, S. Crovisier, and E. Pujals, “Iterated functions systems, blenders and parablenders,” in Fractals and Related Fields III: Proc. Conf., Ile de Porquerolles (France), 2015 (in press); arXiv: 1603.01241 [math.DS].

    Google Scholar 

  9. C. Bonatti and L. J. Díaz, “Persistent nonhyperbolic transitive diffeomorphisms,” Ann. Math., Ser. 2, 143 (2), 357–396 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Bonatti and L. Díaz, “Connexions hétéroclines et généricité d’une infinité de puits et de sources,” Ann. Sci. éc. Norm. Super., Ser. 4, 32 (1), 135–150 ( 1999).

    MATH  Google Scholar 

  11. C. Bonatti and L. J. Díaz, “On maximal transitive sets of generic diffeomorphisms,” Publ. Math., Inst. Hautes étud. Sci. 96, 171–197 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Cobham, “The intrinsic computational difficulty of functions,” in Logic, Methodology and Philosophy of Science: Proc. 1964 Int. Congr. (North-Holland, Amsterdam, 1965), pp. 24–30.

    Google Scholar 

  13. L. J. Díaz, A. Nogueira, and E. R. Pujals, “Heterodimensional tangencies,” Nonlinearity 19 (11), 2543–2566 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Hénon, “A two-dimensional mapping with a strange attractor,” Commun. Math. Phys. 50 (1), 69–77 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Hofbauer and G. Keller, “Quadratic maps without asymptotic measure,” Commun. Math. Phys. 127 (2), 319–337 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  16. B. R. Hunt and V. Yu. Kaloshin, “Prevalence,” in Handbook of Dynamical Systems (Elsevier, Amsterdam, 2010), Vol. 3, pp. 43–87.

    Google Scholar 

  17. Yu. Ilyashenko and W. Li, Nonlocal Bifurcations (Am. Math. Soc., Providence, RI, 1999), Math. Surv. Monogr. 66.

    MATH  Google Scholar 

  18. S. Kiriki and T. Soma, “Takens’ last problem and existence of non-trivial wandering domains,” arXiv: 1503.06258 [math.DS].

  19. E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130–141 (1963).

    Article  Google Scholar 

  20. L. Mora and M. Viana, “Abundance of strange attractors,” Acta Math. 171 (1), 1–71 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  21. S. E. Newhouse, “Diffeomorphisms with infinitely many sinks,” Topology 13, 9–18 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  22. S. E. Newhouse, “Lectures on dynamical systems,” in Dynamical Systems: C.I.M.E. Lectures, Bressanone, 1978 (Birkhäuser, Boston, 1980), Prog. Math. 8, pp. 1–114.

    Google Scholar 

  23. C. Pugh and M. Shub, “Ergodic attractors,” Trans. Am. Math. Soc. 312 (1), 1–54 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  24. C. Pugh and M. Shub, “Stable ergodicity and partial hyperbolicity,” in Int. Conf. on Dynamical Systems, Montevideo, 1995—A Tribute to Ricardo Mané. Proc. (Longman, Harlow, 1996), Pitman Res. Notes Math. Ser. 362, pp. 182–187.

    Google Scholar 

  25. S. Smale, “Differentiable dynamical systems,” Bull. Am. Math. Soc. 73 (6), 747–817 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Takahasi, “Abundance of non-uniform hyperbolicity in bifurcations of surface endomorphisms,” Tokyo J. Math. 34 (1), 53–113 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Turaev, “Maps close to identity and universal maps in the Newhouse domain,” Commun. Math. Phys. 335 (3), 1235–1277 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  28. Q. Wang and L.-S. Young, “Strange attractors with one direction of instability,” Commun. Math. Phys. 218 (1), 1–97 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  29. J.-C. Yoccoz, “Introduction to hyperbolic dynamics,” in Real and Complex Dynamical Systems: Proc. NATO Adv. Study Inst., Hillerød, 1993 (Kluwer, Dordrecht, 1995), NATO ASI Ser. C: Math. Phys. Sci. 464, pp. 265–291.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Berger.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2017, Vol. 297, pp. 7–37.

In memoriam of Dmitry Victorovich Anosov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berger, P. Emergence and non-typicality of the finiteness of the attractors in many topologies. Proc. Steklov Inst. Math. 297, 1–27 (2017). https://doi.org/10.1134/S0081543817040010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543817040010

Navigation