Skip to main content
Log in

Finite groups whose prime graphs do not contain triangles. II

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The study of finite groups whose prime graphs do not contain triangles is continued. The main result of this paper is the following theorem: if G is a finite nonsolvable group whose prime graph contains no triangles and S(G) is the greatest solvable normal subgroup of G, then |π(G)| ≤ 8 and |π(S(G))| ≤ 3. A detailed description of the structure of a group G satisfying the conditions of the theorem is obtained in the case when π(S(G)) contains a number that does not divide the order of the group G/S(G). We also construct an example of a finite solvable group of Fitting length 5 whose prime graph is a 4-cycle. This completes the determination of the exact bound for the Fitting length of finite solvable groups whose prime graphs do not contain triangles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. A. Alekseeva and A. S. Kondrat’ev, “Finite groups whose prime graphs do not contain triangles. I,” Proc. Steklov Inst. Math. 295 (Suppl. 1), S11–S20 (2016).

    Article  Google Scholar 

  2. A. S. Kondrat’ev, A. A. Osinovskaya, and I. D. Suprunenko, “On the behavior of elements of prime order from a Singer cycle in representations of a special linear group,” in Abstracts of the XI Belarusian Mathematical Conference, Minsk, Belarus, 2012, pp. 34–35.

    Google Scholar 

  3. A. S. Kondrat’ev and I. V. Khramtsov, “On finite triprimary groups,” Trudy Inst. Mat. Mekh. UrO RAN 16 (3), 150–158 (2010).

    Google Scholar 

  4. A. S. Kondrat’ev and I. V. Khramtsov, “On finite tetraprimary groups,” Proc. Steklov Inst. Math. 279 (Suppl. 1), S43–S61 (2012).

    Article  MATH  Google Scholar 

  5. V. D. Mazurov, “Characterizations of finite groups by sets of the orders of their elements,” Algebra Logic 36 (1), 23–32 (1997).

    Article  MathSciNet  Google Scholar 

  6. N. D. Podufalov, “Finite simple groups without elements of sixth order,” Algebra Logic 16 (2), 133–135 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Aschbacher, Finite Group Theory (Cambridge Univ. Press, Cambridge, 1986).

    MATH  Google Scholar 

  8. C. Jansen, K. Lux, R. Parker, and R. Wilson, An Atlas of Brauer Characters (Clarendon, Oxford, 1995).

    MATH  Google Scholar 

  9. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups (Clarendon, Oxford, 1985).

    MATH  Google Scholar 

  10. J. N. Bray, D. F. Holt, and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups (Cambridge Univ. Press, Cambridge, 2013), Ser. London Math. Soc. Lect. Note 407.

    Book  MATH  Google Scholar 

  11. R. Brandl, “Finite groups all of whose elements are of prime power order,” Boll. Un. Mat. Ital. A 18 (3), 491–493 (1981).

    MathSciNet  MATH  Google Scholar 

  12. L. Dornhoff, Group Representation Theory, (Dekker, New York, 1971), Part A.

    MATH  Google Scholar 

  13. P. Fleischmann, W. Lempken, and P. H. Tiep, “Finite p′-semiregular groups,” J. Algebra 188 (2), 547–579 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  14. L. R. Fletcher, B. Stellmacher, and W. B. Stewart, “Endliche Gruppen, die kein Element der Ordnung 6 enthalten,” Quart. J. Math. Oxford, Ser. 2, 28 (110), 143–154 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  15. The GAP Group (GAP—Groups, Algorithms, and Programming), Version 4.4.12. http://www.gap-system.org

  16. L. M. Gordon, “Finite simple groups with no elements of order six,” Bull. Austral. Math. Soc. 17 (2), 235–246 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Gorenstein, Finite Simple Groups (Harper and Row, New York, 1968).

    MATH  Google Scholar 

  18. D. Gorenstein, R. Lyons, and R. Solomon, The Classification of the Finite Simple Groups (Amer. Math. Soc., Providence, RI, 1998), Ser. Math. Surveys and Monographs 40 (3).

    MATH  Google Scholar 

  19. G. Higman, “Finite groups in which every element has prime power order,” J. London Math. Soc. 32, 335–342 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Higman, Odd Characterizations of Finite Simple Groups: Lecture Notes (Univ. Michigan, Ann Arbor, MI, 1968).

    Google Scholar 

  21. M. C. Lucido, “Groups in which the prime graph is a tree,” Boll. Unione Mat. Ital. B 5 (1), 131–148 (2002).

    MathSciNet  MATH  Google Scholar 

  22. W. B. Stewart, “Groups having strongly self-centralizing 3-centralizers,” Proc. London Math. Soc. 426 (4), 653–680 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Suzuki, “On a class of doubly transitive groups,” Ann. Math. 75 (1), 105–145 (1962).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Alekseeva.

Additional information

Original Russian Text © O.A. Alekseeva, A.S. Kondrat’ev, 2016, published in Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Vol. 22, No. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseeva, O.A., Kondrat’ev, A.S. Finite groups whose prime graphs do not contain triangles. II. Proc. Steklov Inst. Math. 296 (Suppl 1), 19–30 (2017). https://doi.org/10.1134/S0081543817020031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543817020031

Keywords

Navigation