Advertisement

The ternary Goldbach problem with a prime and two isolated primes

  • Helmut Maier
  • Michael Th. Rassias
Article
  • 32 Downloads

Abstract

We prove that under the assumption of the Generalized Riemann Hypothesis each sufficiently large odd integer can be expressed as the sum of a prime and two isolated primes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Balog and J. Friedlander, “A hybrid of theorems of Vinogradov and Piatetski-Shapiro,” Pac. J. Math. 156 (1), 45–62 (1992).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    A. Balog and A. Perelli, “Exponential sums over primes in an arithmetic progression,” Proc. Am. Math. Soc. 93, 587–582 (1985).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    N. G. de Bruijn, “On the number of positive integers = x and free of prime factors > y,” Nederl. Acad. Wet., Proc., Ser. A, 54, 50–60 (1951).MathSciNetzbMATHGoogle Scholar
  4. 4.
    P. Erdős, “On the difference of consecutive primes,” Q. J. Math., Oxford Ser. 6, 124–128 (1935).CrossRefzbMATHGoogle Scholar
  5. 5.
    P. Erdős and M. B. Nathanson, “Lagrange’s theorem and thin subsequences of squares,” in Contributions to Probability, Ed. by J. Gani and V. K. Rohatgi (Academic Press, New York, 1981), pp. 3–9.CrossRefGoogle Scholar
  6. 6.
    K. Ford, B. Green, S. Konyagin, J. Maynard, and T. Tao, “Long gaps between primes,” arXiv: 1412.5029v2 [math.NT].Google Scholar
  7. 7.
    K. Ford, B. Green, S. Konyagin, and T. Tao, “Large gaps between consecutive prime numbers,” Ann. Math., Ser. 2, 183 (3), 935–974 (2016); arXiv: 1408.4505 [math.NT].MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    H. Halberstam and H.-E. Richert, Sieve Methods (Academic Press, London, 1974).zbMATHGoogle Scholar
  9. 9.
    H. A. Helfgott, “Major arcs for Goldbach’s theorem,” arxiv: 1305.2897v1 [math.NT].Google Scholar
  10. 10.
    H. A. Helfgott and D. J. Platt, “Numerical verification of the ternary Goldbach conjecture up to 8875 · 1030,” Exp. Math. 22 (4), 406–409 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    H. Iwaniec, Lectures on the Riemann Zeta Function (Am. Math. Soc., Providence, RI, 2014), Univ. Lect. Ser. 62.CrossRefzbMATHGoogle Scholar
  12. 12.
    H. Iwaniec and E. Kowalski, Analytic Number Theory (Am. Math. Soc., Providence, RI, 2004), AMS Colloq. Publ. 53.Google Scholar
  13. 13.
    J. Liu and T. Zhan, “The ternary Goldbach problem in arithmetic progressions,” Acta Arith. 82 (3), 197–227 (1997).MathSciNetzbMATHGoogle Scholar
  14. 14.
    H. Maier and C. Pomerance, “Unusually large gaps between consecutive primes,” Trans. Am. Math. Soc. 322 (1), 201–237 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    J. Maynard, “Large gaps between primes,” Ann. Math., Ser. 2, 183 (3), 915–933 (2016); arXiv: 1408.5110 [math.NT].MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    I. I. Piatetski-Shapiro, “On the distribution of prime numbers in sequences of the form [f(n)],” Mat. Sb. 33 (3), 559–566 (1953).MathSciNetzbMATHGoogle Scholar
  17. 17.
    J. Pintz, “Very large gaps between consecutive primes,” J. Number Theory 63 (2), 286–301 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    H. Rademacher, “Über eine Erweiterung des Goldbachschen Problems,” Math. Z. 25, 627–657 (1926).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    R. A. Rankin, “The difference between consecutive prime numbers,” J. London Math. Soc. 13, 242–247 (1938).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    R. A. Rankin, “The difference between consecutive prime numbers. V,” Proc. Edinburgh Math. Soc., Ser. 2, 13, 331–332 (1963).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    M. Th. Rassias, Goldbach’s Conjecture: Selected Topics (Springer, New York, in press).Google Scholar
  22. 22.
    A. Schönhage, “Eine Bemerkung zur Konstruktion großer Primzahllücken,” Arch. Math. 14, 29–30 (1963).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    I. M. Vinogradov, “Representation of an odd number as the sum of three primes,” Dokl. Akad. Nauk SSSR 15 (6–7), 291–294 (1937).Google Scholar
  24. 24.
    E. Westzynthius, “Über die Verteilung der Zahlen, die zu den n ersten Primzahlen teilerfremd sind,” Commentat. Phys.-Math. Helsingfors 5 (25), 1–37 (1931).zbMATHGoogle Scholar
  25. 25.
    E. Wirsing, “Thin subbases,” Analysis 6, 285–308 (1986).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of UlmUlmGermany
  2. 2.Institute of MathematicsUniversity of ZürichZürichSwitzerland
  3. 3.Institute for Advanced StudyPrincetonUSA

Personalised recommendations