Skip to main content
Log in

A new kth derivative estimate for exponential sums via Vinogradov’s mean value

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We give a slight refinement to the process by which estimates for exponential sums are extracted from bounds for Vinogradov’s mean value. Coupling this with the recent works of Wooley, and of Bourgain, Demeter and Guth, providing optimal bounds for the Vinogradov mean value, we produce a powerful new kth derivative estimate. Roughly speaking, this improves the van der Corput estimate for k ≥ 4. Various corollaries are given, showing for example that \(\zeta \left( {\sigma + it} \right){ \ll _\varepsilon }{t^{{{\left( {1 - \sigma } \right)}^{3/2}}/2 + \varepsilon }}\) for t ≥ 2 and 0 ≤ σ ≤ 1, for any fixed ε > 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bourgain, C. Demeter, and L. Guth, “Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three,” Ann. Math., Ser. 2, 184 (2), 633–682 (2016); arXiv:1512.01565 [math.NT].

    Article  MathSciNet  MATH  Google Scholar 

  2. K. Ford, “Vinogradov’s integral and bounds for the Riemann zeta function,” Proc. London Math. Soc., Ser. 3, 85 (3), 565–633 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. A. Gritsenko, “Estimates of trigonometric sums by the third derivative,” Mat. Zametki 60 (3), 383–389 (1996) [Math. Notes 60, 283–287 (1996)].

    Article  MathSciNet  MATH  Google Scholar 

  4. N. M. Korobov, “Estimates of trigonometric sums and their applications,” Usp. Mat. Nauk 13 (4), 185–192 (1958).

    MathSciNet  Google Scholar 

  5. H. L. Montgomery, Topics in Multiplicative Number Theory (Springer, Berlin, 1971), Lect. Notes Math. 227.

    Book  MATH  Google Scholar 

  6. O. Robert, “On van der Corput’s k-th derivative test for exponential sums,” Indag. Math., New Ser. 27 (2), 559–589 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  7. O. Robert and P. Sargos, “A fourth derivative test for exponential sums,” Compos. Math. 130 (3), 275–292 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Sargos, “Points entiers au voisinage d’une courbe, sommes trigonométriques courtes et paires d’exposants,” Proc. London Math. Soc., Ser. 3, 70 (2), 285–312 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Sargos, “An analog of van der Corput’s A4-process for exponential sums,” Acta Arith. 110 (3), 219–231 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  10. E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed. (Clarendon Press, Oxford, 1986).

    MATH  Google Scholar 

  11. I. M. Vinogradov, “New estimates for Weyl sums,” Dokl. Akad. Nauk SSSR 3 (5), 195–198 (1935).

    MATH  Google Scholar 

  12. I. M. Vinogradov, “A new estimate of the function ζ(1 + it),” Izv. Akad. Nauk SSSR, Ser. Mat. 22 (2), 161–164 (1958).

    MathSciNet  Google Scholar 

  13. T. D. Wooley, “The cubic case of the main conjecture in Vinogradov’s mean value theorem,” Adv. Math. 294, 532–561 (2016); arXiv: 1401.3150 [math.NT].

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Heath-Brown.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2017, Vol. 296, pp. 95–110.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heath-Brown, D.R. A new kth derivative estimate for exponential sums via Vinogradov’s mean value. Proc. Steklov Inst. Math. 296, 88–103 (2017). https://doi.org/10.1134/S0081543817010072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543817010072

Navigation