Skip to main content
Log in

Stability of equilibrium with respect to white noise

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

A system of ordinary differential equations with a local asymptotically stable equilibrium is considered. The problem of stability with respect to a persistent perturbation of the white noise type is discussed. Stability with given bounds is proved on a large time interval with length of the order of the squared inverse perturbation amplitude. The proof is based on the construction of a barrier function for the parabolic Kolmogorov equation associated with the perturbed dynamical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. I. Gikhman and A. V. Skorokhod, Introduction to the Theory of Random Processes (Moscow, Fizmatgiz, 1977; Dover, New York, 1996).

    MATH  Google Scholar 

  2. Z. Schuss, Theory and Applications of Stochastic Processes (Springer, New York, 2010), Ser. Applied Mathematical Sciences 170.

    Book  MATH  Google Scholar 

  3. M. A. Lyapunov, The General Problem of the Stability of Motion (Gostekhizdat, Moscow, 1950; Taylor and Francis, London, 1992).

    MATH  Google Scholar 

  4. I. Ya. Kats and N. N. Krasovskii, “On the stability of systems with random parameters,” J. Appl. Math. Mech. 24 (5), 1225–1246 (1960).

    Article  MATH  Google Scholar 

  5. R. Z. Khas’minskii, Stability of Systems of Differential Equations under Random Perturbations of Their Parameters (Nauka, Moscow, 1969) [in Russian].

    MATH  Google Scholar 

  6. M. M. Khapaev, Asymptotic Methods and Stability in the Theory of Nonlinear Oscillations (Vysshaya Shkola, Moscow, 1988) [in Russian].

    Google Scholar 

  7. I. G. Malkin, Theory of Stability of Motion (GITTL, Moscow, 1952) [in Russian].

    MATH  Google Scholar 

  8. N. N. Krasovskii, Some Problems in the Theory of Motion Stability (Fizmatgiz, Moscow, 1959) [in Russian].

    Google Scholar 

  9. V. E. Germaidze and N. N. Krasovskii, “Stability under persistent disturbances,” Prikl. Mat. Mekh. 21 (6), 769–774 (1957).

    Google Scholar 

  10. N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations (Nauka, Moscow, 1974; Gordon and Breach, New York, 1962).

    MATH  Google Scholar 

  11. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (VINITI, Moscow, 1985; Springer, Berlin, 2006).

    MATH  Google Scholar 

  12. L. A. Kalyakin, “Asymptotic analysis of autoresonance models,” Russian Math. Surv. 63 (5), 791–857 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Z. Khas’minskii, “On stability under persistent random perturbations,” in Theory of Information Transfer: Pattern Recognition (Nauka, Moscow, 1965), pp. 74–87 [in Russian].

    Google Scholar 

  14. I. Ya. Kats, Method of Lyapunov Functions in the Problems of Optimization and Stability of Systems with Random Structure (Izd. UrGAPS, Yekaterinburg, 1998) [in Russian].

    Google Scholar 

  15. A. D. Venttsel’ and M. I. Freidlin, Fluctuations in Dynamic Systems under Small Random Perturbations (Nauka, Moscow, 1979) [in Russian].

    MATH  Google Scholar 

  16. H. Ishii and P. E. Souganidis, “Metastability for parabolic equation with drift: Part 1.” http://arxiv.org/ abs/1312.5504.pdf. Cited December 19, 2013.

    Google Scholar 

  17. L. Kalyakin, “Stability under persistent perturbation by white noise,” J. Phys. Conf. Ser. 482, paper 012019 (2014).

    Article  Google Scholar 

  18. L. A. Kalyakin, “Lyapunov functions in barriers for parabolic equations and in stability problems with respect to white noise,” Russ. J. Math. Phys. 21 (4), 472–483 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  19. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type (Nauka, Moscow, 1967; Amer. Math. Soc., Providence, 1968).

    MATH  Google Scholar 

  20. B. Øksendal, Stochastic Differential Equations: An Introduction with Applications (Springer, Berlin, 1985; Mir, Moscow, 2003).

    Book  MATH  Google Scholar 

  21. N. V. Krylov, Controlled Diffusion Processes (Nauka, Moscow, 1977).

    MATH  Google Scholar 

  22. A. Artemyev, D. Vainchtein, A. Neishtadt, and L. Zelenyi, “Resonant acceleration of charged particles in the presence of random fluctuations,” Phys. Rev. E 84, paper 046213 (2011).

    Article  Google Scholar 

  23. I. Barth, L. Friedland, E. Sarid, and A. G. Shagalov, “Autoresonance transition in the presence of noise and self-fields,” paper 155001 (2009).

    Google Scholar 

  24. L. A. Kalyakin and O. A. Sultanov, “Stability of autoresonance models,” Differential Equations 49 (3), 267–281 (2013).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Kalyakin.

Additional information

Original Russian Text © L.A. Kalyakin, 2015, published in Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Vol. 21, No. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalyakin, L.A. Stability of equilibrium with respect to white noise. Proc. Steklov Inst. Math. 295 (Suppl 1), 68–77 (2016). https://doi.org/10.1134/S008154381609008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S008154381609008X

Keywords

Navigation