Skip to main content
Log in

An exact algorithm with linear complexity for a problem of visiting megalopolises

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

A problem of visiting megalopolises with a fixed number of “entrances” and precedence relations defined in a special way is studied. The problem is a natural generalization of the classical traveling salesman problem. For finding an optimal solution, we give a dynamic programming scheme, which is equivalent to a method of finding a shortest path in an appropriate acyclic oriented weighted graph. We justify conditions under which the complexity of the algorithm depends on the number of megalopolises polynomially, in particular, linearly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V.Korobkin, A. N. Sesekin, O. L. Tashlykov, and A.G. Chentsov, Routing Methods and Their Applications in Problems of the Enhancement of Safety and Efficiency of Nuclear Plant Operation (Novye Tekhnologii, Moscow, 2012) [in Russian].

    Google Scholar 

  2. A. G. Chentsov, “On routing of task complexes,” Vestn. Udmurt. Univ., Ser. Mat. Mekh. Komp. Nauki, No. 1, 59–82 (2013).

    Article  MATH  Google Scholar 

  3. A. G. Chentsov, A. A. Chentsov, and P. A. Chentsov, “Elements of dynamic programming in extremal routing problems,” Problemy Upravl., No. 5, 12–21 (2013).

    MATH  Google Scholar 

  4. A. G. Chentsov, “Problem of successive megalopolis traversal with the precedence conditions,” Autom. Remote Control 75 (4), 728–744 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer Computations, Ed. by R. E. Miller and J. W. Thatcher (Plenum, New York, 1972), pp. 85–103.

    Chapter  Google Scholar 

  6. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Fransisco, 1979; Mir, Moscow, 1982).

    MATH  Google Scholar 

  7. N. Christofides, “Worst-case analysis of a new heuristic for the traveling salesman problem,” in Algorithms and Complexity: New Directions and Recent Results (Academic, New York, 1976), p. 441.

    Google Scholar 

  8. S. Arora, “Polynomial-time approximation schemes for Euclidean traveling salesman and other geometric problems,” J. Assoc. Comput. Mach. 45 (5), 753–782 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Kh. Gimadi and V. A. Perepelitsa, “An asymptotic approach to solving the traveling salesman problem,” in Control Systems: Collection of Papers (Inst. Mat. SO AN SSSR, Novosibirsk, 1974), issue 12, pp. 35–45 [in Russian].

    Google Scholar 

  10. M. Yu. Khachai and E. D. Neznakhina, “Approximability of the problem about a minimum-weight cycle cover of a graph,” Dokl. Math. 91 (2), 240–245 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Yu. Khachai and E. D. Neznakhina, “A polynomial-time approximation scheme for the Euclidean problem on a cycle cover of a graph,” Tr. Inst. Mat. Mekh. 20 (4), 297–311 (2014).

    MATH  Google Scholar 

  12. R. Bellman, “Dynamic programming treatment of the traveling salesman problem,” J. Assoc. Comput. Mach. 9, 61–63 (1962).

    Article  MATH  Google Scholar 

  13. M. Held and R. Karp, “A dynamic programming approach to sequencing problems,” J. Soc. Indust. Appl. Math. 10 (1), 196–210 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Balas, “New classes of efficiently solvable generalized traveling salesman problems,” Ann. Oper. Res. 86, 529–558 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Balas and N. Simonetti, “Linear time dynamic-programming algorithms for new classes of restricted TSPs: A computational study,” INFORMS J. Comput. 13 (1), 56–75 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  16. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3rd ed. (MIT Press, Cambridge, MA, 2009).

    MATH  Google Scholar 

  17. I. I. Melamed, S. I. Sergeev, and I. Kh. Sigal, “The traveling salesman problem. Exact methods,” Automat. Remote Control 50 (10), 1303–1324 (1989).

    MathSciNet  MATH  Google Scholar 

  18. The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, Ed. by E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. Shmoys (Wiley, Chichester, 1985).

  19. G. Steiner, “On the complexity of dynamic programming for sequencing problems with precedence constraints,” Ann. Oper. Res. 26 (1–4), 103–123 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. M. Grigor’ev, E. E. Ivanko, S. T. Knyazev, and A. G. Chentsov, “Dynamic programming in a generalized courier problem with inner tasks,” Mekhatr. Avtomat. Upravl., No. 7, 14–21 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Chentsov.

Additional information

Original Russian Text © A.G. Chentsov, M.Yu. Khachai, D.M.Khachai, 2015, published in Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Vol. 21, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chentsov, A.G., Khachai, M.Y. & Khachai, D.M. An exact algorithm with linear complexity for a problem of visiting megalopolises. Proc. Steklov Inst. Math. 295 (Suppl 1), 38–46 (2016). https://doi.org/10.1134/S0081543816090054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543816090054

Keywords

Navigation