Skip to main content
Log in

Finite groups whose prime graphs do not contain triangles. I

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

Finite groups whose prime graphs do not contain triangles are investigated. In the present part of the study, the isomorphic types of prime graphs and estimates of the Fitting length of solvable groups are found and almost simple groups are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gruber, T. M. Keller, M. L. Lewis, K. Naughton, and B. Strasser, “A characterization of the prime graphs of solvable groups,” J. Algebra 442, 397–422 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Bourbaki, Groupes et algèbres de Lie (Paris, Hermann, 1968; Mir, Moscow, 1972).

    MATH  Google Scholar 

  3. A. V. Vasil’ev and E. P. Vdovin, “An adjacency criterion in the prime graph of a finite simple group,” Algebra Logic 44 (6), 381–406 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. V. Vasil’ev and E. P. Vdovin, “Cocliques of maximal size in the prime graph of a finite simple group,” Algebra Logic 50 (4), 291–322 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. S. Kondrat’ev, “Prime graph components of finite simple groups,” Math. USSR-Sb. 67 (1), 235–247 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. S. Kondratiev, “Finite almost simple 5–primary groups and their Gruenberg–Kegel graphs,” Sib. Elektron. Mat. Izv. 11, 634–674 (2014).

    MATH  Google Scholar 

  7. A. S. Kondrat’ev and I. V. Khramtsov, “On finite triprimary groups,” Trudy Inst. Mat. Mekh. UrO RAN 16 (3), 150–158 (2010).

    Google Scholar 

  8. A. S. Kondrat’ev and I. V. Khramtsov, “On finite tetraprimary groups,” Proc. Steklov Inst. Math. 279 (Suppl. 1), S43–S61 (2012).

    Article  MATH  Google Scholar 

  9. V. D. Mazurov, “Characterizations of finite groups by sets of the orders of their elements,” Algebra Logic 36 (1), 23–32 (1997).

    Article  MathSciNet  Google Scholar 

  10. M. Aschbacher, Finite Group Theory (Cambridge Univ. Press, Cambridge, 1986).

    MATH  Google Scholar 

  11. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups (Clarendon, Oxford, 1985).

    MATH  Google Scholar 

  12. J. N. Bray, D. F. Holt, and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups (Cambridge Univ. Press, Cambridge, 2013), Ser. London Math. Soc. Lect. Note 407.

    Book  MATH  Google Scholar 

  13. Z. M. Chen and W. J. Shi, “On simple Cpp-groups,” J. Southwest China Normal Univ. 18 (3), 249–256 (1993).

    Google Scholar 

  14. D. Gorenstein, Finite Groups (Harper and Row, New York, 1968).

    MATH  Google Scholar 

  15. D. Gorenstein, R. Lyons, and R. Solomon, The Classification of the Finite Simple Groups (Amer. Math. Soc., Providence, RI, 1998), Ser. Math. Surveys and Monographs 40 (3).

    MATH  Google Scholar 

  16. B. Hartley and T. Meixner, “Finite soluble groups containing an element of prime order whose centralizer is small,” Arch. Math. 36 (3), 211–213 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Higman, “Finite groups in which every element has prime power order,” J. London Math. Soc. 32, 335–342 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical Groups (Cambridge Univ. Press, Cambridge, 1990), Ser. London Math. Soc. Lect. Note 129.

    Book  MATH  Google Scholar 

  19. M. C. Lucido, “The diameter of the prime graph of finite groups,” J. Group Theory 2 (2), 157–172 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  20. M. C. Lucido, “Groups in which the prime graph is a tree,” Boll. Unione Mat. Ital. B 5 (1), 131–148 (2002).

    MathSciNet  MATH  Google Scholar 

  21. G. Malle, “The maximal subgroups of 2F4(q2),” J. Algebra 139 (1), 52–68 (1991).

    Article  MathSciNet  Google Scholar 

  22. A. L. Gavrilyuk, I. V. Khramtsov, A. S. Kondrat’ev, and N. V. Maslova, “On realizability of a graph as the prime graph of a finite group,” Sib. Elektron. Mat. Izv. 11, 246–257 (2014).

    MATH  Google Scholar 

  23. E. Stensholt, “Certain embeddings among finite groups of Lie type,” J. Algebra 53 (1), 136–187 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Suzuki, “On a class of doubly transitive groups,” Ann. Math. 75 (1), 105–145 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  25. J. S. Williams, “Prime graph components of finite groups,” J. Algebra 69 (2), 487–513 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  26. K. Zsigmondy, “Zur Theorie der Potenzreste,” Monatsh. Math. Phys. 3 (1), 265–284 (1892).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Alekseeva.

Additional information

Original Russian Text © O.A. Alekseeva, A.S. Kondrat’ev, 2015, published in Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Vol. 21, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseeva, O.A., Kondrat’ev, A.S. Finite groups whose prime graphs do not contain triangles. I. Proc. Steklov Inst. Math. 295 (Suppl 1), 11–20 (2016). https://doi.org/10.1134/S0081543816090029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543816090029

Keywords

Navigation