Skip to main content
Log in

Abel’s theorem and Bäcklund transformations for the Hamilton-Jacobi equations

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We consider an algorithm for constructing auto-Bäcklund transformations for finitedimensional Hamiltonian systems whose integration reduces to the inversion of the Abel map. In this case, using equations of motion, one can construct Abel differential equations and identify the sought Bäcklund transformation with the well-known equivalence relation between the roots of the Abel polynomial. As examples, we construct Bäcklund transformations for the Lagrange top, Kowalevski top, and Goryachev–Chaplygin top, which are related to hyperelliptic curves of genera 1 and 2, as well as for the Goryachev and Dullin–Matveev systems, which are related to trigonal curves in the plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. H. Abel, “Mémoire sur une propriété générale d’une classe très-étendue de fonctions transcendantes,” in Oeuvres complètes (Grondahl & Son, Christiania, 1881), Vol. 1, pp. 145–211.

    Google Scholar 

  2. H. F. Baker, Abel’s Theorem and the Allied Theory, Including the Theory of the Theta Functions (Univ. Press, Cambridge, 1897).

    MATH  Google Scholar 

  3. I. A. Bizayev and A. V. Tsiganov, “On the Routh sphere problem,” J. Phys. A: Math. Theor. 46(8), 085202 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. I. Bobenko and Yu. B. Suris, Discrete Differential Geometry. Integrable Structure (Am. Math. Soc., Providence, RI, 2008), Grad. Stud. Math.98.

    Book  MATH  Google Scholar 

  5. A. V. Borisov and I. S. Mamaev, Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos (Inst. Komp’yut. Issled., Moscow, 2005) [in Russian].

    MATH  Google Scholar 

  6. A. V. Borisov, I. S. Mamaev, and A. V. Tsiganov, “Non-holonomic dynamics and Poisson geometry,” Usp. Mat. Nauk 69(3), 87–144 (2014) [Rus. Math. Surv. 69, 481–538 (2014)].

    Article  MathSciNet  MATH  Google Scholar 

  7. H. W. Braden, V. Z. Enolski, and Yu. N. Fedorov, “Dynamics on strata of trigonal Jacobians and some integrable problems of rigid body motion,” Nonlinearity 26(7), 1865–1889 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. A. Chaplygin, “A new partial solution of the problem of rotation of a heavy rigid body about a fixed point,” Tr. Otd. Fiz. Nauk Obshch. Lyubitelei Estestvoznaniya 12(1), 1–4 (1904).

    MathSciNet  Google Scholar 

  9. A. Clebsch and P. Gordan, Theorie der Abelschen Functionen (Teubner, Leipzig, 1866).

    Google Scholar 

  10. B. A. Dubrovin, Riemann Surfaces and Nonlinear Equations (Regulyarnaya i Khaoticheskaya Dinamika, Moscow, 2001) [in Russian].

    Google Scholar 

  11. H. R. Dullin and V. S. Matveev, “A new integrable system on the sphere,” Math. Res. Lett. 11, 715–722 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Euler, Institutionum calculi integralis (Acad. Imp. Sci., Petropoli, 1768–1770).

  13. D. N. Goryachev, “On a motion of a heavy rigid body about a fixed point in the case of A = B = 4C,” Mat. Sb. 21(3), 431–438 (1900).

    Google Scholar 

  14. D. N. Goryachev, “New cases of integrability of Euler’s dynamical equations,” Varshav. Univ. Izv., No. 3, 3–15 (1916).

    MATH  Google Scholar 

  15. M. L. Green and P. A. Griffiths, “Abel’s differential equations,” Houston J. Math. 28(2), 329–351 (2002).

    MATH  Google Scholar 

  16. A. G. Greenhill, The Applications of Elliptic Functions (Macmillan and Co., London, 1892).

    MATH  Google Scholar 

  17. P. Griffiths, “The legacy of Abel in algebraic geometry,” in The Legacy of Niels Henrik Abel, Ed. by O. A. Laudal and R. Piene (Springer, Berlin, 2004), pp. 179–205.

    Chapter  Google Scholar 

  18. R. Hirota and K. Kimura, “Discretization of the Euler top,” J. Phys. Soc. Japan 69(3), 627–630 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. N. W. Hone, O. Ragnisco, and F. Zullo, “Algebraic entropy for algebraic maps,” J. Phys. A: Math. Theor. 49 (2), 02LT01 (2016).

    Google Scholar 

  20. C. G. J. Jacobi, “Über eine neue Methode zur Integration der hyperelliptischen Differentialgleichungen und über die rationale Form ihrer vollständigen algebraischen Integralgleichungen,” J. Reine Angew. Math. 32, 220–227 (1846).

    Article  Google Scholar 

  21. S. Kowalevski, “Sur le problème de la rotation d’un corps solide autour d’un point fixe,” Acta Math. 12, 177–232 (1889).

    Article  MathSciNet  Google Scholar 

  22. V. B. Kuznetsov, M. Petrera, and O. Ragnisco, “Separation of variables and Bäcklund transformations for the symmetric Lagrange top,” J. Phys. A: Math. Gen. 37(35), 8495–8512 (2004).

    Article  MATH  Google Scholar 

  23. V. B. Kuznetsov and E. K. Sklyanin, “On Bäcklund transformations for many-body systems,” J. Phys. A: Math. Gen. 31(9), 2241–2251 (1998).

    Article  MATH  Google Scholar 

  24. V. Kuznetsov and P. Vanhaecke, “Bäcklund transformations for finite-dimensional integrable systems: A geometric approach,” J. Geom. Phys. 44(1), 1–40 (2002).

    Article  MATH  Google Scholar 

  25. J.-L. Lagrange, Théorie des fonctions analytiques (Bachelier, Imprimeur-Librarie, Paris, 1847).

    Google Scholar 

  26. M. Petrera, A. Pfadler, and Yu. B. Suris, “On integrability of Hirota–Kimura type discretizations,” Regul. Chaotic Dyn. 16(3–4), 245–289 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  27. O. Ragnisco and F. Zullo, “Bäcklund transformations for the Kirchhoff top,” SIGMA, Symmetry Integrability Geom. Methods Appl. 7, 001 (2011).

    MATH  Google Scholar 

  28. F. J. Richelot, “Ueber die Integration eines merkwürdigen Systems von Differentialgleichungen,” J. Reine Angew. Math. 23, 354–369 (1842).

    Article  MathSciNet  Google Scholar 

  29. M. Rosenlicht, “Equivalence relations on algebraic curves,” Ann. Math., Ser. 2, 56, 169–191 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  30. E. K. Sklyanin, “Bäcklund transformations and Baxter’s Q-operator,” in Integrable Systems: From Classical to Quantum: Proc. 38th Sess. Sém. Math. Supér., Montréal, 1999 (Am. Math. Soc., Providence, RI, 2000), CRM Proc. Lect. Notes 26, pp. 227–250.

    Google Scholar 

  31. A. P. Sozonov and A. V. Tsiganov, “Bäcklund transformations relating different Hamilton–Jacobi equations,” Teor. Mat. Fiz. 183(3), 372–387 (2015) [Theor. Math. Phys. 183, 768–781 (2015)].

    Article  MATH  Google Scholar 

  32. P. Stäckel, “Ueber die Integration der Hamilton–Jacobi’schen Differentialgleichung mittels Separation der Variabeln,” Habilitationsschr. (Halle, 1891).

    Google Scholar 

  33. P. Stäckel, “Ueber die Integration der Hamilton’schen Differentialgleichung mittelst Separation der Variabeln,” Math. Ann. 49(1), 145–147 (1897).

    Article  MathSciNet  MATH  Google Scholar 

  34. Yu. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach (Birkhäuser, Basel, 2003), Prog. Math.219.

    Book  MATH  Google Scholar 

  35. A. V. Tsiganov, “On a family of integrable systems on S2 with a cubic integral of motion,” J. Phys. A: Math. Gen. 38(4), 921–927 (2005).

    Article  MATH  Google Scholar 

  36. A. V. Tsiganov, “On natural Poisson bivectors on the sphere,” J. Phys. A: Math. Theor. 44(10), 105203 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  37. A. V. Tsiganov, “Simultaneous separation for the Neumann and Chaplygin systems,” Regul. Chaotic Dyn. 20(1), 74–93 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  38. A. V. Tsiganov, “On the Chaplygin system on the sphere with velocity dependent potential,” J. Geom. Phys. 92, 94–99 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  39. A. V. Tsiganov, “On auto and hetero Bäcklund transformations for the Hénon–Heiles systems,” Phys. Lett. A 379(45–46), 2903–2907 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  40. A. V. Tsiganov, “Killing tensors with nonvanishing Haantjes torsion and integrable systems,” Regul. Chaotic Dyn. 20(4), 463–475 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  41. A. V. Tsiganov and V. A. Khudobakhshov, “Integrable systems on the sphere associated with genus three algebraic curves,” Regul. Chaotic Dyn. 16(3–4), 396–414 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  42. A. V. Vershilov and A. V. Tsiganov, “On bi-Hamiltonian geometry of some integrable systems on the sphere with cubic integral of motion,” J. Phys. A: Math. Theor. 42(10), 105203 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  43. K. Weierstrass, “Ü ber die geodätischen Linien auf dem dreiaxigen Ellipsoid,” in Mathematische Werke (Mayer & Müller, Berlin, 1894), Vol. 1, pp. 257–266.

    Google Scholar 

  44. K. Weierstrass, “Bemerkungen über die Integration der hyperelliptischen Differential-Gleichungen,” in Mathematische Werke (Mayer & Müller, Berlin, 1894), Vol. 1, pp. 267–273.

    Google Scholar 

  45. S. Wojciechowski, “The analogue of the Bäcklund transformation for integrable many-body systems,” J. Phys. A: Math. Gen. 15(12), 653–657 (1982).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tsiganov.

Additional information

Original Russian Text © A.V. Tsiganov, 2016, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Vol. 295, pp. 261–291.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsiganov, A.V. Abel’s theorem and Bäcklund transformations for the Hamilton-Jacobi equations. Proc. Steklov Inst. Math. 295, 243–273 (2016). https://doi.org/10.1134/S0081543816080162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543816080162

Navigation