Skip to main content
Log in

A KAM theorem for space-multidimensional Hamiltonian PDEs

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We present an abstract KAM theorem adapted to space-multidimensional Hamiltonian PDEs with smoothing nonlinearities. The main novelties of this theorem are the following: (i) the integrable part of the Hamiltonian may contain a hyperbolic part and, as a consequence, the constructed invariant tori may be unstable; (ii) it applies to singular perturbation problems. In this paper we state the KAM theorem and comment on it, give the main ingredients of the proof, and present three applications of the theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Berti and P. Bolle, “Sobolev quasi periodic solutions of multidimensional wave equations with a multiplicative potential,” Nonlinearity 25(9), 2579–2613 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Berti and P. Bolle, “Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential,” J. Eur. Math. Soc. 15(1), 229–286 (2013).

    Article  MATH  Google Scholar 

  3. M. Berti, L. Corsi, and M. Procesi, “An abstract Nash–Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds,” Commun. Math. Phys. 334(3), 1413–1454 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Bourgain, “Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations,” Ann. Math., Ser. 2, 148(2), 363–439 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Bourgain, Green’s Function Estimates for Lattice Schrödinger Operators and Applications (Princeton Univ. Press, Princeton, NJ, 2005), Ann. Math. Stud.158.

    Book  MATH  Google Scholar 

  6. L. H. Eliasson, “Perturbations of stable invariant tori for Hamiltonian systems,” Ann. Sc. Norm. Super. Pisa, Cl. Sci., Ser. 4, 15(1), 115–147 (1988).

    MathSciNet  MATH  Google Scholar 

  7. L. H. Eliasson, B. Grébert, and S. B. Kuksin, “KAM for the non-linear beam equation 2: A normal form theorem,” arXiv: 1502.02262 [math.AP].

  8. L. H. Eliasson, B. Grébert, and S. B. Kuksin, “KAM for the nonlinear beam equation,” arXiv: 1604.01657 [math.AP].

  9. L. H. Eliasson and S. B. Kuksin, “On reducibility of Schrödinger equations with quasiperiodic in time potentials,” Commun. Math. Phys. 286(1), 125–135 (2009).

    Article  MATH  Google Scholar 

  10. L. H. Eliasson and S. B. Kuksin, “KAM for the nonlinear Schrödinger equation,” Ann. Math., Ser. 2, 172(1), 371–435 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Geng and J. You, “A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces,” Commun. Math. Phys. 262(2), 343–372 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Geng and J. You, “KAM tori for higher dimensional beam equations with constant potentials,” Nonlinearity 19(10), 2405–2423 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Grébert and E. Paturel, “KAM for the Klein–Gordon equation on Sd,” Boll. Unione Mat. Ital., Ser. 9, 9(2), 237–288 (2016).

    Article  MATH  Google Scholar 

  14. B. Grébert and E. Paturel, “On reducibility of quantum harmonic oscillator on Rd with quasiperiodic in time potential,” arXiv: 1603.07455 [math.AP].

  15. B. Grébert and L. Thomann, “KAM for the quantum harmonic oscillator,” Commun. Math. Phys. 307(2), 383–427 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  16. S. B. Kuksin, “Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum,” Funkts. Anal. Prilozh. 21(3), 22–37 (1987) [Funct. Anal. Appl. 21, 192–205 (1987)].

    MathSciNet  MATH  Google Scholar 

  17. S. B. Kuksin, Nearly Integrable Infinite-Dimensional Hamiltonian Systems (Springer, Berlin, 1993), Lect. Notes Math. 1556.

    Book  MATH  Google Scholar 

  18. S. B. Kuksin, Analysis of Hamiltonian PDEs (Oxford Univ. Press, Oxford, 2000), Oxford Lect. Ser. Math. Appl.19.

    MATH  Google Scholar 

  19. S. Kuksin and J. Pöschel, “Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation,” Ann. Math., Ser. 2, 143(1), 149–179 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Pöschel, “A KAM-theorem for some nonlinear partial differential equations,” Ann. Sc. Norm. Super. Pisa, Cl. Sci., Ser. 4, 23(1), 119–148 (1996).

    MathSciNet  MATH  Google Scholar 

  21. C. Procesi and M. Procesi, “A KAM algorithm for the resonant non-linear Schrödinger equation,” Adv. Math. 272, 399–470 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Procesi and C. Procesi, “A normal form for the Schrödinger equation with analytic non-linearities,” Commun. Math. Phys. 312(2), 501–557 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  23. W.-M. Wang, “Energy supercritical nonlinear Schrödinger equations: Quasiperiodic solutions,” Duke Math J. 165(6), 1129–1192 (2016).

    MATH  Google Scholar 

  24. J. You, “Perturbations of lower dimensional tori for Hamiltonian systems,” J. Diff. Eqns. 152(1), 1–29 (1999).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Hakan Eliasson.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Vol. 295, pp. 142–162.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliasson, L.H., Grébert, B. & Kuksin, S.B. A KAM theorem for space-multidimensional Hamiltonian PDEs. Proc. Steklov Inst. Math. 295, 129–147 (2016). https://doi.org/10.1134/S0081543816080071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543816080071

Navigation