Skip to main content
Log in

Arnold diffusion in a neighborhood of strong resonances

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The paper deals with nearly integrable multidimensional a priori unstable Hamiltonian systems. Assuming the Hamilton function is smooth and time-periodic, we study perturbations that are trigonometric polynomials in the “angle” variables in the first approximation. For a generic system in this class, we construct a trajectory whose projection on the space of slow variables crosses a small neighborhood of a strong resonance. We also estimate the speed of this crossing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnol’d, “Instability of dynamical systems with several degrees of freedom,” Dokl. Akad. Nauk SSSR 156(1), 9–12 (1964) [Sov. Math., Dokl. 5, 581–585 (1964)].

    MathSciNet  MATH  Google Scholar 

  2. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (Springer, Berlin, 2006), Encycl. Math. Sci.3.

    MATH  Google Scholar 

  3. S. Aubry and G. Abramovici, “Chaotic trajectories in the standard map: The concept of anti-integrability,” Physica D 43(2–3), 199–219 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Berti, L. Biasco, and P. Bolle, “Drift in phase space: A new variational mechanism with optimal diffusion time,” J. Math. Pures Appl., Sér. 9, 82(6), 613–664 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Berti and P. Bolle, “A functional analysis approach to Arnold diffusion,” Ann. Inst. Henri Poincaré, Anal. Non Linéaire 19(4), 395–450 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  6. U. Bessi, “An approach to Arnold’s diffusion through the calculus of variations,” Nonlinear Anal., Theory Methods Appl. 26(6), 1115–1135 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. V. Bolotin and D. V. Treschev, “Remarks on the definition of hyperbolic tori of Hamiltonian systems,” Regul. Chaotic Dyn. 5(4), 401–412 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. V. Bolotin and D. V. Treschev, “The anti-integrable limit,” Usp. Mat. Nauk 70(6), 3–62 (2015) [Russ. Math. Surv. 70, 975–1030 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Bounemoura and E. Pennamen, “Instability for a priori unstable Hamiltonian systems: A dynamical approach,” Discrete Contin. Dyn. Syst. 32(3), 753–793 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. W. S. Cassels, An Introduction to Diophantine Approximation (Univ. Press, Cambridge, 1957), Cambridge Tracts Math. Math. Phys.45.

    MATH  Google Scholar 

  11. C.-Q. Cheng and J. Xue, “Arnold diffusion in nearly integrable Hamiltonian systems of arbitrary degrees of freedom,” arXiv: 1503.04153v3 [math.DS].

  12. C.-Q. Cheng and J. Yan, “Existence of diffusion orbits in a priori unstable Hamiltonian systems,” J. Diff. Geom. 67(3), 457–517 (2004).

    MathSciNet  MATH  Google Scholar 

  13. C.-Q. Cheng and J. Yan, “Arnold diffusion in Hamiltonian systems: A priori unstable case,” J. Diff. Geom. 82(2), 229–277 (2009).

    MathSciNet  MATH  Google Scholar 

  14. L. Chierchia and G. Gallavotti, “Drift and diffusion in phase space,” Ann. Inst. Henri Poincaré, Phys. Théor. 60(1), 1–144 (1994).

    MathSciNet  MATH  Google Scholar 

  15. A. Delshams and G. Huguet, “Geography of resonances and Arnold diffusion in a priori unstable Hamiltonian systems,” Nonlinearity 22(8), 1997–2077 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Delshams and G. Huguet, “A geometric mechanism of diffusion: Rigorous verification in a priori unstable Hamiltonian systems,” J. Diff. Eqns. 250(5), 2601–2623 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Delshams, R. de la Llave, and T. M. Seara, A Geometric Mechanism for Diffusion in Hamiltonian Systems Overcoming the Large Gap Problem: Heuristics and Rigorous Verification on a Model (Am. Math. Soc., Providence, RI, 2006), Mem. Am. Math. Soc. 179 (844).

    MATH  Google Scholar 

  18. A. Delshams, R. de la Llave, and T. M. Seara, “Geometric properties of the scattering map of a normally hyperbolic invariant manifold,” Adv. Math. 217(3), 1096–1153 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Fontich and P. Martín, “Arnold diffusion in perturbations of analytic integrable Hamiltonian systems,” Discrete Contin. Dyn. Syst. 7(1), 61–84 (2001).

    MathSciNet  MATH  Google Scholar 

  20. G. Gallavotti, G. Gentile, and V. Mastropietro, “Hamilton–Jacobi equation, heteroclinic chains and Arnol’d diffusion in three time scale systems,” Nonlinearity 13(2), 323–340 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Gidea and C. Robinson, “Obstruction argument for transition chains of tori interspersed with gaps,” Discrete Contin. Dyn. Syst., Ser. S, 2(2), 393–416 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  22. S. M. Graff, “On the conservation of hyperbolic tori for Hamiltonian systems,” J. Diff. Eqns. 15(1), 1–69 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Guardia, V. Kaloshin, and J. Zhang, “A second order expansion of the separatrix map for trigonometric perturbations of a priori unstable systems,” Commun. Math. Phys. 348(1), 321–361 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  24. V. Kaloshin and M. Levi, “Geometry of Arnold diffusion,” SIAM Rev. 50(4), 702–720 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  25. V. Kaloshin, J. Zhang, and K. Zhang, “Normally hyperbolic invariant laminations and diffusive behaviour for the generalized Arnold example away from resonances,” arXiv: 1511.04835 [math.DS].

  26. V. Kaloshin and K. Zhang, “A strong form of Arnold diffusion for two and a half degrees of freedom,” arXiv: 1212.1150v2 [math.DS].

  27. V. Kaloshin and K. Zhang, “A strong form of Arnold diffusion for three and a half degrees of freedom,” Preprint (Univ. Maryland, College Park, MD, 2014), http://www2.math.umd.edu/~vkaloshi/papers/announce-three-and-half.pdf

    Google Scholar 

  28. V. Kaloshin and K. Zhang, “Dynamics of the dominant Hamiltonian, with applications to Arnold diffusion,” arXiv: 1410.1844v2 [math.DS].

  29. V. Kaloshin and K. Zhang, “Arnold diffusion for smooth convex systems of two and a half degrees of freedom,” Nonlinearity 28(8), 2699–2720 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  30. N. N. Nekhoroshev, “An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems,” Usp. Mat. Nauk 32(6), 5–66 (1977) [Russ. Math. Surv. 32(6), 1–65 (1977)].

    MathSciNet  MATH  Google Scholar 

  31. G. N. Piftankin and D. V. Treschev, “Separatrix maps in Hamiltonian systems,” Usp. Mat. Nauk 62(2), 3–108 (2007) [Russ. Math. Surv. 62, 219–322 (2007)].

    Article  MathSciNet  Google Scholar 

  32. D. Treschev, “Multidimensional symplectic separatrix maps,” J. Nonlinear Sci. 12(1), 27–58 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Treschev, “Trajectories in a neighbourhood of asymptotic surfaces of a priori unstable Hamiltonian systems,” Nonlinearity 15(6), 2033–2052 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  34. D. Treschev, “Evolution of slow variables in a priori unstable Hamiltonian systems,” Nonlinearity 17(5), 1803–1841 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  35. D. Treschev, “Arnold diffusion far from strong resonances in multidimensional a priori unstable Hamiltonian systems,” Nonlinearity 25(9), 2717–2757 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Treschev and O. Zubelevich, Introduction to the Perturbation Theory of Hamiltonian Systems (Springer, Berlin, 2010).

    Book  MATH  Google Scholar 

  37. E. Zehnder, “Generalized implicit function theorems with applications to some small divisor problems. I, II,” Commun. Pure Appl. Math. 28(1), 91–140 (1975); 29(1), 49–111 (1976).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Davletshin.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Vol. 295, pp. 72–106.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davletshin, M.N., Treschev, D.V. Arnold diffusion in a neighborhood of strong resonances. Proc. Steklov Inst. Math. 295, 63–94 (2016). https://doi.org/10.1134/S0081543816080058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543816080058

Navigation