Skip to main content
Log in

Abstract

In an ordinary billiard system, trajectories of a Hamiltonian system are elastically reflected after a collision with a hypersurface (scatterer). If the scatterer is a submanifold of codimension more than 1, we say that the billiard is degenerate. We study those trajectories of degenerate billiards that have an infinite number of collisions with the scatterer. Degenerate billiards appear as limits of systems with elastic reflections or as small-mass limits of systems with singularities in celestial mechanics. We prove the existence of trajectories of such systems that shadow the trajectories of the corresponding degenerate billiards. The proofs are based on a version of the method of an anti-integrable limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (Springer, Berlin, 1988), Encycl. Math. Sci.3.

    MATH  Google Scholar 

  2. S. Aubry and G. Abramovici, “Chaotic trajectories in the standard map. The concept of anti-integrability,” Physica D 43(2–3), 199–219 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Aubry, R. S. MacKay, and C. Baesens, “Equivalence of uniform hyperbolicity for symplectic twist maps and phonon gap for Frenkel–Kontorova models,” Physica D 56(2–3), 123–134 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  4. S. V. Bolotin, “Nonintegrability of the n-center problem for n > 2,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 3, 65–68 (1984) [Moscow Univ. Mech. Bull. 39(3), 24–28 (1984)].

    MATH  Google Scholar 

  5. S. Bolotin, “Shadowing chains of collision orbits,” Discrete Contin. Dyn. Syst. 14(2), 235–260 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Bolotin, “Symbolic dynamics of almost collision orbits and skew products of symplectic maps,” Nonlinearity 19(9), 2041–2063 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Bolotin, “Degenerate billiards in celestial mechanics,” Regul. Chaotic Dyn. (in press).

  8. S. V. Bolotin and R. S. MacKay, “Periodic and chaotic trajectories of the second species for the n-centre problem,” Celest. Mech. Dyn. Astron. 77(1), 49–75 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Bolotin and R. S. MacKay, “Nonplanar second species periodic and chaotic trajectories for the circular restricted three-body problem,” Celest. Mech. Dyn. Astron. 94(4), 433–449 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Bolotin and P. Negrini, “Regularization and topological entropy for the spatial n-center problem,” Ergodic Theory Dyn. Syst. 21(2), 383–399 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Bolotin and P. Negrini, “Variational approach to second species periodic solutions of Poincaré of the 3 body problem,” Discrete Contin. Dyn. Syst. 33(3), 1009–1032 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Bolotin and P. Negrini, “Shilnikov lemma for a nondegenerate critical manifold of a Hamiltonian system,” Regul. Chaotic Dyn. 18(6), 774–800 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  13. S. V. Bolotin and D. V. Treschev, “The anti-integrable limit,” Usp. Mat. Nauk 70(6), 3–62 (2015) [Russ. Math. Surv. 70, 975–1030 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  14. L. A. Bunimovich, Ya. G. Sinai, and N. I. Chernov, “Statistical properties of two-dimensional hyperbolic billiards,” Usp. Mat. Nauk 46(4), 43–92 (1991) [Russ. Math. Surv. 46(4), 47–106 (1991)].

    MathSciNet  MATH  Google Scholar 

  15. Y.-C. Chen, “On topological entropy of billiard tables with small inner scatterers,” Adv. Math. 224(2), 432–460 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Hénon, Generating Families in the Restricted Three-Body Problem (Springer, Berlin, 1997), Lect. Notes Phys. Monogr.52.

    MATH  Google Scholar 

  17. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge Univ. Press, Cambridge, 1997), Encycl. Math. Appl.54.

    MATH  Google Scholar 

  18. M. Klein and A. Knauf, Classical Planar Scattering by Coulombic Potentials (Springer, Berlin, 1992), Lect. Notes Phys. Monogr.13.

    MATH  Google Scholar 

  19. V. V. Kozlov, “Polynomial conservation laws for the Lorentz gas and the Boltzmann–Gibbs gas,” Usp. Mat. Nauk 71(2), 81–120 (2016) [Russ. Math. Surv. 71, 253–290 (2016)].

    Article  MathSciNet  MATH  Google Scholar 

  20. V. V. Kozlov and D. V. Treshchev, Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts (Am. Math. Soc., Providence, RI, 1991), Transl. Math. Monogr.89.

    MATH  Google Scholar 

  21. J.-P. Marco and L. Niederman, “Sur la construction des solutions de seconde espèce dans le problème plan restreint des trois corps,” Ann. Inst. Henri Poincaré, Phys. Théor. 62(3), 211–249 (1995).

    MathSciNet  Google Scholar 

  22. L. P. Shil’nikov, “On a Poincaré–Birkhoff problem,” Mat. Sb. 74(3), 378–397 (1967) [Math._USSR, Sb. 3(3), 353–371 (1967)].

    Google Scholar 

  23. N. Simányi, “Conditional proof of the Boltzmann–Sinai ergodic hypothesis,” Invent. Math. 177(2), 381–413 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  24. Ya. G. Sinai, “Dynamical systems with elastic reflections,” Usp. Mat. Nauk 25(2), 141–192 (1970) [Russ. Math. Surv. 25(2), 137–189 (1970)].

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Bolotin.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Vol. 295, pp. 53–71.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolotin, S.V. Degenerate billiards. Proc. Steklov Inst. Math. 295, 45–62 (2016). https://doi.org/10.1134/S0081543816080046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543816080046

Navigation