Skip to main content
Log in

Damping of a system of linear oscillators using the generalized dry friction

Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Cite this article

Abstract

The problem of damping a system of linear oscillators is considered. The problem is solved by using a control in the form of dry friction. The motion of the system under the control is governed by a system of differential equations with discontinuous right-hand side. A uniqueness and continuity theorem is proved for the phase flow of this system. Thus, the control in the form of generalized dry friction defines the motion of the system of oscillators uniquely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. I. Ovseevich and A. K. Fedorov, “Asymptotically optimal feedback control for a system of linear oscillators,” Dokl. Math. 88 (2), 613–617 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. K. Fedorov and A. I. Ovseevich, “Asymptotic control theory for a system of linear oscillators.” http://arxiv.org/pdf/1308.6090v2.pdf

  3. A. I. Ovseevich and A. K. Fedorov, “Motion of a system of oscillators under the generalized dry friction control,” Autom. Remote Control 76 (5), 826–833 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  4. R. J. DiPerna and P. L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces,” Invent. Math. 98 (3), 511–547 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  5. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Fizmatgiz, Moscow, 1961; Wiley, New York, 1962).

    Google Scholar 

  6. R. E. Kalman, “On the general theory of control systems,” in Proceedings of the 1st Internat. Congress of IFAC (Izd. Akad. Nauk SSSR, Moscow, 1961), Vol. 1, pp. 482–489.

    Google Scholar 

  7. V. I. Arnold, Mathematical Methods of Classical Mechanics (Nauka, Moscow, 1974; Springer, New York, 1989).

    Book  Google Scholar 

  8. F. L. Chernous’ko, “On the construction of a bounded control in oscillatory systems,” J. Appl. Math. Mech. 52 (4), 426–433 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. I. Ovseevich, “Complete controllability of linear dynamic systems,” J. Appl. Math. Mech. 53 (5), 665–668 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. I. Ovseevich, “Limit behaviour of attainable and superattainable sets,” in Modeling, Estimation and Control of Systems with Uncertainty: Conference Proceedings, Sopron, Hungary, 1990 (Birkhäuser, Basel, 1991), pp. 324–333.

    Chapter  Google Scholar 

  11. E. V. Goncharova and A. I. Ovseevich, “Comparative analysis of the asymptotic dynamics of reachable sets to linear systems,” J. Comput. Syst. Sci. Int. 46 (4), 505–513 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. I. Ovseevich, “Singularities of attainable sets,” Russ. J. Math. Phys. 5 (3), 389–398 (1998).

    MathSciNet  MATH  Google Scholar 

  13. R. Schneider, Convex Bodies: The Brunn–Minkowski Theory (Cambridge Univ. Press, Cambridge, 1993).

    Book  MATH  Google Scholar 

  14. A. F. Filippov, Differential Equations with Discontinuous Righthand Sides (Nauka, Moscow, 1985; Springer, Berlin, 1988).

    Book  Google Scholar 

  15. A. I. Ovseevich, “Irregular dynamic systems according to R.J. DiPerna and P.L. Lions,” Funct. Anal. Other Math. 4 (1), 57–70 (2012).

    MathSciNet  Google Scholar 

  16. I. A. Bogaevskii, “Discontinuous gradient differential equations and trajectories in calculus of variations,” Mat. Sb. 197 (12), 11–42 (2006).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Ovseevich.

Additional information

Original Russian Text © A.I. Ovseevich, A.K. Fedorov, 2015, published in Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Vol. 21, No. 2.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovseevich, A.I., Fedorov, A.K. Damping of a system of linear oscillators using the generalized dry friction. Proc. Steklov Inst. Math. 293 (Suppl 1), 156–165 (2016). https://doi.org/10.1134/S008154381605014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S008154381605014X

Keywords

Navigation