Skip to main content
Log in

An analog of Gonchar’s theorem for the m-point version of Leighton’s conjecture

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

Gonchar’s theorem on the validity of Leighton’s conjecture for arbitrary nondecreasing sequences of exponents of general C-fractions is extended to continued fractions of a more general form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Worpitsky, “Untersuchungen über die Entwickelung der monodromen und monogenen Funktionen durch Kettenbruche,” in Friedrichs-Gymnasium und Realschule Jahresbericht (Berlin, 1865), pp. 3–39.

    Google Scholar 

  2. H. S. Wall, Analytic Theory of Continued Fractions (D. van Nostrand, New York, 1948).

    MATH  Google Scholar 

  3. W. T. Scott and H. S. Wall, “Continued fraction expansions for arbitrary power series,” Ann. Math., Ser. 2, 41 (2), 328–349 (1940).

    Article  MathSciNet  MATH  Google Scholar 

  4. W. J. Thron, “Singular points of functions defined by C-fractions,” Proc. Natl. Acad. Sci. USA 36, 51–54 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  5. W. B. Jones and W. J. Thron, Continued Fractions: Analytic Theory and Applications (Cambridge Univ. Press, Cambridge, 1984).

    Book  MATH  Google Scholar 

  6. A. A. Gonchar, “Singular points of meromorphic functions defined by their expansion in a C-fraction,” Mat. Sb. 197 (10), 3–14 (2006) [Sb. Math. 197, 1405–1416 (2006)].

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Pólya, “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III,” Sitzungsber. Preuss. Akad. Wiss., 55–62 (1929).

    Google Scholar 

  8. V. I. Buslaev, “An estimate of the capacity of singular sets of functions that are defined by continued fractions,” Anal. Math. 39 (1), 1–27 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  9. V. I. Buslaev, “An analogue of Polya’s theorem for piecewise holomorphic functions,” Mat. Sb. 206 (12), 55–69 (2015) [Sb. Math. 206, 1707–1721 (2015)].

    Article  MathSciNet  Google Scholar 

  10. E. B. Saff and V. Totik, Logarithmic Potentials with External Fields (Springer, Berlin, 1997), Grundl. Math. Wiss. 316.

    Book  MATH  Google Scholar 

  11. H. Stahl, “The convergence of Padé approximants to functions with branch points,” J. Approx. Theory 91 (2), 139–204 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  12. V. I. Buslaev and S. P. Suetin, “On equilibrium problems related to the distribution of zeros of the Hermite–Padé polynomials,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 290, 272–279 (2015) [Proc. Steklov Inst. Math. 290, 256–263 (2015)].

    MATH  Google Scholar 

  13. S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation,” Usp. Mat. Nauk 70 (5), 121–174 (2015) [Russ. Math. Surv. 70, 901–951 (2015)].

    Article  MathSciNet  Google Scholar 

  14. V. I. Buslaev and S. P. Suetin, “On the existence of compacta of minimal capacity in the theory of rational approximation of multi-valued analytic functions,” J. Approx. Theory 206, 48–67 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  15. V. I. Buslaev, “Convergence of m-point Padé approximants of a tuple of multivalued analytic functions,” Mat. Sb. 206 (2), 5–30 (2015) [Sb. Math. 206, 175–200 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  16. V. I. Buslaev, “Capacity of a compact set in a logarithmic potential field,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 290, 254–271 (2015) [Proc. Steklov Inst. Math. 290, 238–255 (2015)].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Buslaev.

Additional information

Original Russian Text © V.I. Buslaev, 2016, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Vol. 293, pp. 133–145.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buslaev, V.I. An analog of Gonchar’s theorem for the m-point version of Leighton’s conjecture. Proc. Steklov Inst. Math. 293, 127–139 (2016). https://doi.org/10.1134/S008154381604009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S008154381604009X

Navigation